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Abstract

According to appraisal theorists, coping strategies sther the evaluation of
those internal and environmental conditions which aregieed, remembered or
imagined as negatively affecting an agent. This evalugtinmse characterises
the appraisal (Lazarus, 1985), which eventually triggkesphysiological and
motor responses that belong to the subject’s learned artse&lly evolved reper-
toire as those that are most likely to help ending the singssiimulus. Ex-
periments dealing with long lasting inescapable stresditions (e.g. restraint
test, Porsolt test) perfectly illustrate the appraisabtiieas soon as the stress-
Ing stimulus is perceived, the naive subject (typically @ tiges to perform the
escape strategies of its repertoire. The active copingegdlaass several minutes
(time varies according to the experimental paradigm) amgl¢haracterised by
high dopamine (DA) release in the Nucleus Accumbens (NAnd)leyperactiv-
ity (when allowed). Nevertheless, if the stressing stimydarsists and any effort
to escape from it is worthless, the subject eventually chants behavioural
strategy, thus starting the passive coping phase, whichasacterised by ac-
cumbens DA release significantly below the basal level amdability. We have
decided to address the problem of investigating the neugahamics underlying
the appraisal of controllability using an anatomic and exyst approach (e.g.
see Armony et al. 1997). That is to say, we have developedraineass model,
using Matlab application, characterised by a) few netwarksusimulating the
activity of neural populations via standard leaky funcig®ayan and Abbott,
2001); b) an architecture wholly constrained on the basthefknown brain



anatomy.

The target data consist of microdialyses recorded by Paseti@l. (2007)
during a restraint experience lasting 240’: this experinteas been selected
because of its slow dynamics and the solid amount of dataecoimy cate-
cholamine releases. Indeed, the recordings show the rajgidance played
by the medial PreFrontal Cortex (mPFC) in establishing theunt of mesoac-
cumbens DA in three different conditions: sham and eitheloDAorepinephrine
(NE) selective depletion in the mPFC.

The model is grounded on three key hypothesgpsvinPFC NE allows pre-
limbic cortex (PL) to guide active coping strategies andosurpthe cost of these
responses by enhancing NAcc DA level®;, ymPFC DA allows infralimbic cor-
tex (IL) to block active coping attempts when these are uresssful by decreas-
ing NAcc DA levels below baseline3] the learning process involving IL and
PL leads to the transition from active to passive copingagias. In conclusion,
the model proved to be able to simulate and reproduce rativerately all the
target data, hence providing a good systemic representatithe mechanisms
causing these dynamics in rats. Furthermore, the modeid@eseveral predic-
tions resulting from the simulation of specific lesions, ipgvthe way for new
experiments that might either falsify or verify the modetiais core hypotheses.



Chapter 1

Introduction

Emotions play a central role in the life of mammals, shaphmgway these or-
ganisms perceive and understand the world, biasing théefband affecting
their behaviours as a response to external and internaltcaorsl

Despite their pivotal function and broad presence acrasssp, emotions are
an extremely elusive psychobiological phenomenon: stilsgegariances (con-
sidering timing, body/brain regulatory reactions, neaclvity and behaviours)
and low experimental control on the internal conditionsha brganism make
it difficult to establish univocal correlations leading fmesific emotions starting
from a causal chain of stimuli or conditions. Furthermorapdons are a perfect
example of emergent phenomena arising from the interaatimong systems and
therefore they are better represented as dynamic flows igftiest taking place
in heterogenous interconnected systems rather than states (i.e. in clas-
sic functionalist perspective: Putham 1967) realised bywdgenous "emotional
centres” in the brain.

This heterogeneity is amplified by the vast amount of avéladols deployed
to measure and record activity and functioning of the systewolved. In the
latest years, the field of neuroscience has seen a tremeadaeaiscement of tra-
ditional investigation techniques and the emergence @frsétechnologies (e.g.,
structural and functional brain imaging techniques, tcamsial magnetic stim-
ulation, anatomical tracing techniques, voltammetry ancradialysis, multi-
electrode array recording, genetic manipulation; Heusbétkal., 2002; Lomber,
1999; Raichle and Mintun, 2006; Rothwell, 1997; Toga and Mara, 1996):
these techniques are producing data characterised byediffeme scales, dif-
ferent levels of granularity — from molecular levels to redyyopulation levels,
different involvement of time — synchronous data vs. timgesg etc..
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All things considered, any analysis of this complex psyabiolgical phe-
nomenon has to deal with most, if not all, of the following: ) (ariability,
concerning time and amounts of recorded measurements;ef@®)rmed or at-
tempted behaviours; (C) broad regulation of both the bodthe brain via hor-
mones and catecholamine and (D) several neural systenmaatitey with one
another, generating circular causal interactions.

The grain of analysis of bio-constrained models. Among the several possible
approaches, the next chapters of this dissertation endarsmatomic perspec-
tive” of the appraisal theory (Marsella et al., 2010). Aaiog to appraisal the-
orists, emotions result univocally from a sequence of ataas taking into ac-
count a flow of information provided by the perceived worlé (iits significance
for the organism) and the general condition of the very asgarperforming the
appraisal (Scherer et al., 2001). Depending on the availatdrnal and external
resources — and considering among the resources the agjemtis repertoire of
actions — the evaluation evokes a single emotive resporasga(ls, 1985, 1991;
Lazarus and Folkman, 1984) characterised by the aforeamattifeatures.

The appraisal theory shifts the attention from the elusiwecept of emo-
tion to a vague concept of evaluation: nonetheless, therlatsufficient for
the anatomic approach to pursue a concrete explanationegpribcesses re-
alising it, focussing on the neural mechanism underlyingteonal responses
(Ledoux, 1996; Panksepp, 1998). This approach pushesifdmiva generation
of artificial neural circuits characterised by architeegiwhose design matches
as much as possible the structure of the biological neuistesy under anal-
ysis. These anatomically-constrained neural circuitsa@tomically-inspired,
depending on the reliability of the final structures) aredbee of the computa-
tional models which are asked to simulate and successfegiijfcate the brain
functioning characterising both fast, automatic emotioesponses and slower,
differentiated ones (e.g. see Armony et al. 1997).

When it comes to generate models of emotions, the commitm&ntuced
by any approach —such the anatomic one here described—ssiffiotentper se
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in determining a comprehensive procedure: any simplifigdesentation —i.e.
model- of reality relies on a set of theories bridging therespntation to the
real phenomenon it is representing. The predictions theetnmavides thanks
to the analysis of its functioning must refer once again toréml phenomenon
it is representing and they must be tested having in mind taeteatio of the

simplification employed. A model does not provide hints dhbaata it is not

representing and it cannot represent data at scales difféem the one used
to perform the starting simplification: both uses of the mMadentually lead to

meaningless results. Thus, the process of simplificatignvistal: the chosen
grain of analysis must be kept constant when consideringtli@)target data
the model aims to replicate, (B) the functions ascribed todystems that are
represented in the model and finally (C) the predictionswhihbe tested.

The otherwise abstract problem of the grain of analysis imesammediately
clear when considering the wide range of possibilitiesydts, processes and
experiments than can be addressed in the field of neurogcattemotions in
particular (the issue is widely discussed in the field of gdolphy of science:
concerning psychological predicates and emotions, seat8eand Mundale
1999). Indeed, the anatomical approach may be used to @eatke variety of
models in the continuum between a fine and a coarse grainesioéting models
will be focussing on representing accurately phenomer@vimg molecular re-
actions, dynamics of the activity of the receptors, feaafesingle ion channels,
spiking activity of each neuron in the network, micro arehbttire of each neural
area involved, average activity of populations and macretire allowing these
areas to interact with one another, broad effects of thecbateamines on entire
neural regions, abstract functions to ascribe to macroahsystems using a be-
havioural or evolutionary perspective and finally, the wtar itself (including
learning and higher cognition).

Incidentally, the vast amount of data that can be poteptbressed to using
computational models pushes forward the use of the conddgpb-@onstrained
(Mirolli et al., 2010) rather than the narrowed concept cftamically-constrained
models. Indeed, bio-constrained models builtbynputational and systems neu-
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rosciencgChurchland et al., 1993; Churchland and Sejnowski, 192¢dn and
Abbott, 2001; Sejnowski, 1986), are constrained by a wigepsdifferentiated
evidence coming from anatomy, as well as from physiologyrogathology or
behavioural analysis.

The validation problem and the choice of the "mean field” gran. The choice
of the grain of analysis always comes at a price: a finer gratnally allows
better explanations and more accurate predictions, batugaly leads the prob-
lem of setting the parameters and -as a consequence- ittlead=akening the
chances to start a fruitful process of validation/falstima of the theories the
model relies on.

The reasoning leading to this conclusion is not straightéod and requires a
brief explanation. First of all, the finer the grain of anadys$he more it requires
the model to incorporate data and constraints: each of thetseof data and
constraints is characterised by its own spatial and tenhoede, requiring a
number of assumptions, ad-hoc hypothesis and -what is nmeceeasing the
number of variables and parameters to be tuned to allow tlielmdo replicate
and explain their target phenomena.

In literature, the problem of finding the appropriate setarfgmeters has been
solved using powerful regression techniques such as thet@&ealgorithms
(GAs; Chou and Voit, 2009; Moles et al., 2003; Ruppin, 2002)ich have been
used to tune the model described in this dissertation. GAsvately known and
used in tuning parameters with non-linear regressions dKaglu et al., 2007;
Vander Noot and Abrahams, 1998; Yao and Sethares, 1994,gjilreet al.,
1995) and are generally considered as very effective becautheir "blind”
search within the parameter space (via randomly generatations and selec-
tions a posterior). In bio-constrained models, the recurrent connectivitgire
acterising the neural architectures and the non-linea@ractions between the
system components result in a wide and complex multidinograsiparameter
space which the GAs explore looking for a set of parametasrthght allow
the model to fit any provided set of target data.
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The GAs (as any other regression tool) may then fall into tiffeiént kinds
of problems: first, the simulation of all the desired intéi@ts may become
computationally prohibitive when coupled with the highbneplex neural archi-
tecture of a bio-constrained model. For instance, a neatalork characterised
by either a high number of units or an extremely detailed amdpiex simulation
of the chemical interactions may easily result in a paransiace so vast that
there is simply not enough time or computing power to expéwen a small part
of it. As a conseguence no regression is possible and thetlingges the model
Is grounded on cannot be validated or falsified.

A second, more subtle, problem relies on the use of a vast euaiflparam-
eters: the regression tool may succeed in finding a satgsfyat of values for
the parameters, but this result might be once again useldks process of ei-
ther validation or falsification of the model. This is the ead underdetermined
models, a problem which is firmly bound with the concept ofstoaints and
available degrees of freedom: if the introduced constsan¢ insufficient to re-
strict the degree of freedom arising from the free pararadiez. if there are
not enough data to keep each of the modeled functions, attena or mecha-
nisms), the solution to the problem of setting the paramsetelt be plausibly
found, but it will not provide any evidence in support of tr@e hypotheses of
the model and hence it will not provide any interesting expteon of the tar-
get phenomenon. In short, an underconstrained conditiml®the parameters
allow replicating so many different (and often conflictirdgta, that the whole
concept of the model becomes irrelevant.

To avoid falling in either problem, this dissertation tissfgicusses on a model
characterised by mean-field neural networks (Bojak et 8032 having as a
core element of the neural system a standard leaky neurtta|lenyan and Ab-
bott, 2001). The dynamics of each of these computationas uapresent the
activity of a whole population of real neurons (e.g., meableg with a mean
field potential recording) allowing a considerable simpétion of the microar-
chitecture and dynamics pertaining the single cells andgsing on the systemic
interactions among neural populations and their resuftingtioning.
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Mean field models come in many varieties and are becomingasangly
popular due to their versatility in capturing different igiees of the average ac-
tivity of neural masses: a compromise between the mentidnedgrain and
coarse grain analysis perfectly matching data coming friff@rdnt experiments
such as the limited spatial resolution of noninvasive neonaging techniques
(Friston et al., 2003; Marreiros et al., 2010) or the invasiicrodialysis used to
record slow tonic catecholaminergic releases in long tioa¢es such as the ones
addressed by the model here presented.

Structure of the dissertation thesis. The whole dissertation thesis is focussed
on a bio-constrained model simulating the releases of batamines in rats sub-
jected to long lasting inescapable stressful conditiohs:réstraint test (Cabib
and Puglisi-Allegra, 1996; Pascucci et al., 2007). The rhsueulates the pro-
cesses taking place in rats due to the huge amount of datae¢habanatomy,
neurophysiology and psychophysiology have accumulatedtahe rat nervous
system: these data represent a perfect repository of isfitomto use whilst
building the structure of the model, also providing a sugintiamount of con-
straints to offset the number of free parameters.

Chapter 2 deals with the theoretical problem of the applrafseontrollabil-
ity, explaining in details how the neural model has beentlamt describing the
core features of the method used to set the parameters,heeGAs and the
way this tool allows tuning both the free parameters and éng structure of the
model. The focus of this chapter is on the way the appraisabaofrollability
changes depending on the number of exposures to the sas&gtexperience:
the model successfully replicates all target data, pusiorvgard a series of pre-
dictions.

Chapter 3, which is a slightly modified version of an artigdeently submitted
to the Journal of Neuroscience, deals with the brain mesharealising the
specific dynamics of the neuromodulators during the regttast. The chapter
describes in details the functioning of the model, its bgidal constraints and
the computational features used to simulate both mean fatiditees and the



effects and dynamics of the neuromodulators on the targasar

The model successfully replicates the whole set of target geoviding a
description of the plausible neural activity during the exment and pushing
forward four predictions concerning lesions that are ndy telpful in under-
standing the processes underlying stress coping, butangttiening the process
of falsifcation/validation of the model.

The appendix at the end of the dissertation thesis providebla of the
acronyms used throughout the dissertation and the taldhe gltrameters evolved
using the GAs and allowing the model to replicate all the that@ presented.



Chapter 2

The appraisal of controllability

Abstract

According to appraisal theorists, emotional and behavabuesponses any organism evokes
in the attempt to cope with perceived stimuli follow the eatibn (appraisal) of both inter-
nal and external conditions characterising the subject.

We rely on a system-level bio-constrained neural model twige an explanation of the
neural mechanisms realising the evaluation of controligbi in particular, this chapter
focusses on catecholaminergic data coming from rats stdajeo restraint test (Cabib and
Puglisi-Allegra, 1996; Pascucci et al., 2007). The modeMites a description of the neural
mechanism underlying the process of appraisal, showing#use of the different coping
strategies deployed by naive and repeatedly exposed ssilijepresence of a long-lasting,
inescapable stressor.

The high number of neural systems involved in the procesthemgquired simulation of the
effects of the neuromodulators result in increasing the lmemof variables and parameters
to be set in the model. Genetic algorithms have been chosentasl to overcome this
problem: this powerful non-linear regression tool has ®sgsfully managed in setting the
free parameters of the model and in guiding the developnfdty neural architecture. This
tuning process allowed the model to replicate all targetagi@roviding several predictions.

2.1 Introduction

2.1.1 Appraisal

The emotional and behavioural response to stress conslpiarys a fundamen-
tal role in the adaptation of organisms. Following the agadaheory (Scherer
et al., 2001), these responses are realised as a conse@fi@ncevaluation pro-
cess taking into account both internal and external camtstand biasing higher
level cognitive processes. First, the evaluation estaédishe nature of the event
and its significance for the organism and secondly, it assdhg chances for the
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organism to cope with the event, depending on the availaseurces. There-
fore, in presence of a stressor and depending on the appthsatressed or-
ganism can trigger several different responses resuhitiggl attempt to remove,
escape or tolerate the stressor itself (Lazarus, 1985, 18@4arus and Folkman,
1984).

The appraisal theory relies on two core assumptions (Scleera., 2001):
first, there is a bijective relation between sequences ofaagads and the emo-
tional and behavioural responses it elicits: appraisasgue emotions so that
each single sequence always evokes the same physiologat@kehavioural re-
sponse (giving an account of individual and temporal ddfexes in emotional
response to the same stimuli). Secondly, the appraisamsysormally evokes
those responses which are more likely to be efficacious iimgopith the pro-
vided stimuli: inadequate understanding of the event dnetivailable resources
(either internal or external) and a poor repertoire of adtilead to inappropriate
appraisals, causing irrational emotive reactions and\bebis. This condition
may be artificially induced interfering with the mechani¢she appraisal and it
may become pathological when the appraisal is constandilerio carry out its
normal evaluation process.

The physiological changes taking place during the evalngirocess and its
produced sequence of appraisals have been widely investigdn particular,
the use of animal models (Hull, 1943; Tolman, 1932) and thigabf control-
ling neurophysiological variables (via neuromodulatonraigts and antagonists,
lesions, inactivation and microdialysis techniques) hlagen granting a solid
and constant inflow of data which mainly concerns conditignieither pavlo-
vian/instrumental and positive/aversive), goal-oridnitehaviours and, what is
more important for the purpose of this paper, stress cophmgat et al., 2005,
2008, 2006; Cabib and Puglisi-Allegra, 1994, 1996; Mai&84; Maier and
Watkins, 2005; Pascucci et al., 2007). Nonetheless, thge lmmount of data
concerning neural and cathecolaminergic activities igpeosesufficient to give
an account of the nature and functioning of the mechanismicguhese regu-
lations and the resulting behavioural responses, so thatraerstanding of the
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brain mechanisms underlying the phenomena targeted byathasinot increas-
ing at the same pace.

The difficulties in investigating appraisal are due to theesal neural compo-
nents (areas and modulators) it requires at different pdyiological level and
the very nature of these interactions, which rely on a typeanfsality charac-
terised by a high degree of circularity (Lewis, 2005). Thagper proposes to
address this complexity using a computational model, feiogsin particular
on the appraisal of stress controllability, targeting daiacerning the specific
evaluation processes determining how to cope with novepagdously experi-
enced uncontrollable stressors. This specific type of etaln has been chosen
because of the wealthy amount of data (Amat et al., 2008, ;2Blahd et al.,
2003; Cabib and Puglisi-Allegra, 1994, 1996; Maier and \iWatk2005; Pas-
cucci et al., 2007) and because the appraisal of controtiaimterestingly leads
to completely different behaviours, even in presence oftme persistent stim-
ulus: the complex relation established between constdetred conditions and
a pattern of differentiated coping strategies allows topdiiiy part of the evalu-
ation process, blocking one of the fundamental variablatw®fevaluation (i.e.
the external conditions) and focussing on the remaining(baethe evaluation
of internal condition).

2.1.2 Coping Strategies

Stress-coping strategies can be grouped into two broagarads (Lazarus, 1985,
1991, Lazarus and Folkman, 1984; Rosenstiel and Keefe,)1983‘problem-
focused strategies’ or ‘active (proactive) coping’, refeg to responses directed
to the external environment and aimed at removing or avgitle source of
stress; (b) ‘emotionally-focused strategies’ or ‘passi®ping’, referring to ‘in-
ternal responses’ directed to reduce or sustain the imgabiecstressor, both
physically and psychologically, for example releasing @pdins to mitigate
pain (Frew and Drummond, 2008; Tejedor-Real et al., 1995).

In this respect, dopamine (DA) presence in nucleus accusfi¢fcc), the
terminal region of the mesoaccumbens dopamine systems plagntral role.
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A wealth of ex vivo and in vivo studies demonstrates an elemadf mesoac-
cumbens DA release in response to unconditioned aversmalssuch as foot
shock, tail shock, tail pinch, and restraint (Horvitz, 2RO@esoaccumbens DA
release is also observed in species-typical stressfuriexmes such as in male
rats or mice under attack of conspecifics (Miczek et al., 2008reover, DA
antagonists at doses that do not interfere with motor resggblock the ex-
pression of species-typical defensive strategies towagdsessors whilst DA
agonists stimulate the expression of these responsesd®wan aggressive con-
specifics (Belzung et al., 1991; Filibeck et al., 1988; Righillegra and Cabib,
1988). The use of high doses of DA antagonists in the NAcc istiea cause
of motor deficits: it impairs a number of different types ohbeiour in differ-
ent contexts, including aversive tasks involving for imstaplace avoidance and
taste aversion (Huang and Hsiao, 2002; Salamone, 1994n8a&and Correa,
2002).

An increased DA release in NAcc in stressing conditionsdbale the func-
tions of energizing behavioral attempts to cope with thesstor, ascribing high
incentive salience to goals of actions and favouring quin durable learning
of effective coping attempts (Berridge, 2007; Di Chiara 8adsareo, 2007; Niv
et al., 2007; Salamone et al., 2007; Schultz, 2007). Thia idelso supported
by experiments showing that manipulating the amount of DAhim NAcc re-
sults in altering the disposition of the subjects to make sustain any effort,
independently of the knowledge about the possible resBé#sridge and Robin-
son, 1998; Salamone and Correa, 2002). For example, a lowrand NAcc
DA results in a decreased disposition to select actionsiwmight lead to high
rewards but require high efforts (Salamone et al., 2003).

Dopamine in NAcc also plays an important role in passive mgsirategies.
In fact, in (novel) unavoidable/uncontrollable prolongkssing conditions af-
ter the aforementioned initial increase, NAcc DA falls elthe baseline and
this fall generally correlates with the rats inactivitysteained rodents show this
initial enhancement of DA release, followed by substamtedrement if the ani-
mals are not released from the stressful condition withito2) minutes (Cabib



2.1. Introduction 12

et al., 2002; Imperato et al., 1993; Pascucci et al., 200@li$+tAllegra et al.,
1991). In the Porsolt’s Forced Swimming Test (FST), in whaclimals experi-
ence an energy demanding condition (they are placed in d sai@r tank with
no way out), the DA inhibition takes place within few minutesnging forth
inactivity (Rossetti et al., 1993).

The initial high release of NAcc DA during prolonged streas heen recorded
In naive rats both in inescapable aversive conditions antbitrollable ones.
Nonetheless, if the rat is exposed to several trials of utnotbable stress, the
initial high response is inhibited, even if it is still posk to record the second
below the baseline DA release in NAcc (Bland et al., 2003;icabd Puglisi-
Allegra, 1994). Inhibition of mesoaccumbens DA releasdss eelated to the
reduction of the attempts to escape or remove the sourceessstsuch a be-
haviour, known as ‘behavioral despair’, is typically obsa in FST (Porsolt
et al., 1977). When first immersed in the water tank, naivenats show vigor-
ous attempts to escape from the tank by swimming and strnggdi climb its
walls. These responses are soon replaced by episodes obifitynof increas-
ing length. Independent studies have demonstrated thahichantidepressant
treatments capable of reducing FST-induced despair aBseept FST-induced
accumbal DA decrease (Rossetti et al., 1993).

Summing up, a model of the appraisal of stress controltghhs to deal with
the brain mechanisms underlying the regulation of NAcc Diing) an account
of the different evaluation of uncontrollability showed bgive and repeatedly
stress exposed rats. Increasing evidence indicates thatdldial prefrontal cor-
tex (mPFC) plays the key role role of guidance in this regoa{Amat et al.,
2005; Pascucci et al., 2007; Spencer et al., 2004): thisthgs is consistent
with data coming from both anatomical analysis (Jankowskl 3esack, 2004)
and records of neural activity and behaviours expressdteipitesence of selec-
tive neural inhibition (Peyron et al., 1998).

The goal of this paper is to use a neural-network computatioodel (Gur-
ney, 2007) providing detailed hypotheses on the brain nresires underlying
the appraisal of controllability in the case of long lastingscapable stress con-
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ditions. The soundness of the model has been tested repmgducdetail the
dynamics of the neuromodulators as recorded in rats engagealel and re-
peated restraint test Cabib and Puglisi-Allegra (19963cReci et al. (2007).

2.2 Parameter Setting

The key feature of bio-constrained models is that they relyeural architec-
tures and functioning mechanisms that are constrained Ipyrieal evidence on
the anatomy, physiology, and neuropathology of the bia@algneural systems
that are being modeled. These constraints can range frofedh&es of single
lon channels to the dynamics of neurotransmitters and neaglalators, from
the features of single neurons and the micro-architectil@cal neural circuits
to the macro-architecture of the whole brain. As a mattenof,fthe increasing
amount of addressed data and constraints incorporatethmtaodels leads to a
parallel increase in the number of variables and parametar® models. This
In turn leads to the increasingly difficult problem of finditlge appropriate set
of parameters that may allow the models to replicate anchexfhe target data:
the recurrent connectivity, the use of heterogeneous $icades (e.g., for func-
tioning and for learning), and the highly non-linear dynesmf the interactions
between the sub-parts of a model, make the relation betweeran parameter
set and the functioning of the system with respect to thestaigta very indirect
and difficult to understand and manage.

The difficulties to set the parameters imply that the wholelation process
of the model becomes weak, uncertain and time consumingri3kt generate
ill-grounded falsifications is strongly increased becatseable hypotheses and
model variants may be discarded because the researchére fia finding a
suitable set of parameters to reproduce the target dateeaarskakenly confused
with the model’s inability to reproduce these data. An effioas solution to
this problem comes from the use of Genetic Algorithms (GAlsp€and \oit,
2009; Moles et al., 2003; Ruppin, 2002). In this section ghhique relying
on the use of GAs is described in detail, showing how theya#iearching for
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large parameters sets in bio-constrained neural models. tddhnique is first
illustrated in general and then applied to the model addrggbe problem of
the appraisal of controllability.

2.2.1 Genetic Algorithms

GAs have been initially proposed as a model of Darwiniangumh, where in-
creasingly complex organisms evolve due to the two priesipf selection of the
fittest and reproduction with variation (Goldberg, 1989|lalad, 1975; Mitchell,
1998). GAs are based on computational abstractions of thie b@echanisms
that underly natural evolution, like different kinds of eefion regimes, inheri-
tance mechanisms, crossover techniques, and mutatioosgses.

In general, a GA works as follows. First, tigenomeof anindividual (e.g.,
the parameters of a neural network that undergo the evalmyoprocess) is
encoded in a suitable data structure (e.g., a vector of nis@reoding the con-
nection weights of the network). Then an init@bpulationof these genome is
created (e.g., randomly), and each individplaénotypde.g. the neural network
corresponding to a genome) is tested with the task at hangatoage itsfitness
(performance). The fitness is then used to select the fittesirges, which are re-
produced with random variations so to generate a new popnldf this process
Is iterated several timegé€nerationy, individuals with high fithess eventually
emerge.

GAs have been used as a powerful technique for searchinglatians to
the optimization problems involving large parameter spdGailsen et al., 1995;
Zheng and Lewis, 1994). GAs have been applied to severardiit research
fields, including computer science (Fogel, 1998), machmelligence (Fogel,
2005), electronics (Zebulum et al., 2002), biology (Unged &Moult, 1993),
financial forecast (Chen, 2002), and economics (Allen angbkanen, 1999).

Furthremore, GAs have also been shown to be very effectivenvepplied
to find the parameters of non-linear regressions modelsgi@giu et al., 2007;
Vander Noot and Abrahams, 1998; Yao and Sethares, 1994,gjihreet al.,
1995). In this case, GAs are used to find the parameters ofemmaitincal non-
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linear functions capturing the relations between the iedelent and dependent
variables of a target phenomenon. Their strength stems fin@enfact that the
GAs search within the parameter space in a “blind” fashibat ts to say, they
generate solutions randomly and then select tlaeposteriorj so they do not
need to rely upon gradient ascend or similar techniquesd@ime analytically
untractable when non-linearities overcome a certain leivebmplexity. This is
the main reason making of the GAs a successful tool in theioreed heteroge-
nous environments: robust algorithms with respect to tlag@siof the function
relating the variables of interest.

Two similar fields of application of GAs are very important this research:
Artificial Life ( ALife) (Langton, 1997) and Evolutionary RobotidsR) (Baldas-
sarre and Nolfi, 2009; Baldassarre et al., 2007; Nolfi ande@ioo, 2000). In
these fields GAs are typically used to evolve the connectieighis of neural-
networks that control the behavior of simulated organism®bots interacting
with the environment in complex dynamical ways via noisyssga and actuators
(e.g. Schembrietal., 2007a,b). In this case the fitnessltivass the evolutionary
process is a quantitative measure of the behavioral peaioceof the artificial
systems with respect to the task decided by the experimenter

The application of GAs to ALife models poses problems thatsdvared with
their application to bio-constrained models. First, Alifedels often have a sig-
nificant number of parameters. Second, in both types of nsd@dAk search for
parameters of systems characterised by complex, cirqulanaictions: in ALife
models, much of the complexity of the relations between éaeched parameters
and the target behaviour arises from the controller-badyrenment circular in-
teractions (Baldassarre, 2008); in bio-constrained nmdeé complexity stems
from the highly structured architecture of the system,rofteorporating recur-
rent connectivity and non-linear interactions betweengsygtem components.
The successful application of GAs to ALife models suggdssthis methodol-
ogy might be successfully used for optimizing the paransetébio-constrained
neural systems so as to fit target empirical data related havbeural and/or
neural activity recordings (molecular, electrical, etc.)
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However, there are also important differences betweenvtbefields of ap-
plication. The first one is the smaller emphasis of bio-a@mséd models on the
brain-body-environment interactions. Indeed, even thalesirable in principle,
the simulation of these interactions is often computatigmaohibitive if added
to the internal complexity of bio-constrained models. $®;@nd most impor-
tant, contrarily to the ALife approach the bio-constraimaddeling approach
gives a great importance to the consistency of the moddaltstacture and func-
tioning with biological anatomical and physiological estte: these constraints
are indeed as important as those deriving from the targat d&ese differences
in the kind of models and in their scientific goals generatfednt problems and
require that the application of the GAs is adapted accoiying

2.3 Methods: Parameter Search using Genetic Algorithms

This section describes in detail the methodology used tackdhe parameters
in dynamic bio-constrained models. The first step consnsitdantifying a set of

target data and building a model with an architecture andtfoning consistent
with known anatomical and physiological empirical eviden€hen, the param-
eters to be searched and the fitness function to measure rdamgtars quality

must be defined in details.

The application of the GAs requires setting a number of fegstand meta-
parameters for the GAs themselves, before the model carusiag this pow-
erful regression tool to search for the parameters thatvath@® model to best
fit the target data (validation process). Once the correcmaters have been
found (if they exist), the model is considered validated éiedn be finally used
to produce predictions on new functional or anatomical phana.

The whole process can then be iterated aiming to produceasrgly com-
prehensive models furnishing integrative explanationmoftiple data and ex-
periments.
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2.3.1 Target Data

The target data are a first fundamental source of constrafritee model, and
are used to guide the process of the model validation. Talafet may consist
of any kind of empirical data provided by the literature,lutting recordings of
neural activity (of single units or whole neural populasprof neuromodulator
dynamics, of behaviours exhibited by certain organismis, ddated to different
kinds of lesions, and so on.

There are two major types of data: synchronous data and tmess Syn-
chronous data are represented by adsaftn integers, real numbers, or symbols
dj:

d={dy,ds,....,d,} (2.1)

Time series are instead represented by temporally ordesedally numerical)
data, for example a vectarof n real numberg;:

d= (d17d27 7dn> (22)

The use of synchronous data poses only the problem of asgigmidiffer-
ent weights to different data (see section 2.3.5 below)telaty data consisting
In time series pose further problems, as their single paraslinked by time.
Indeed, the shape of data in time is often considered by tlledist more im-
portant than their absolute values as it represents thedymamics of various
aspects of the studied phenomenon, often revealing imgoctusal relations
between them. This temporal features of time series candieatly captured
by requiring that the model fits the absolute values of tha gaints without
directly taking into account time information. Alternagly, one can ask the GA
to search for parameters that reproduce the time derigbivethe time series, in
alternative or in addition to the request of capturing tladisolute values.

An important aspect of biological data is that differentiegtions of the same
experiments mostly produce different data, making it diftitco define the target
data to validate the model. If the different outcomes do mig¢rdsubstantially,
a simple straightforward solution to the problem is to mdlgedata gathered in
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the different replications by considering their averagethe case the data differ
substantially, one can try to isolate those data that haseerlvariance and that
are more directly relevant for the theories of interest.hi@ tase study we will

see how it is possible to give a higher importance to thesesstgof data (see
also below the section on fitness).

2.3.2 Definition of the Architecture and Functioning of the Model

The definition of the architecture of the model and of the fioming mecha-
nisms of its components is of course of the most importarcthese aspects of
the model implement the biological assumptions and hypahé¢hat represent
the main contribution of the whole modeling research itself

Despite the overwhelming amount of data produced by neigose, the con-
struction of models that can account for the available ecalidata typically
requires the formulation of new hypotheses related to tistence of particular
architectural features or mechanisms that are not cuyreapported by neuro-
scientific evidence, or it may require to take a position wetpect to conflicting
theories. The hypotheses and assumptions that are impiethena model are
validated as far as the model is able to reproduce the alaitabpirical find-
ings, showing that those hypotheses are sufficient (evargthaot necessary)
for explaining the data.

The definition of the architecture of the model is based oeehmain kinds
of constrains: (1) biological constraints coming from tleéevant neuroscien-
tific knowledge already available in the literature; (2) gutational constraints
that must be considered for bulding a model that might alloweproduce the
targe data; (3) epistemological constraints that pushebearcher to identify the
minimum number of components and the simplest functionieghmnisms that,
on one side, conform with the known empirical evidence amdhe other, are
sufficient to reproduce and explain the target data.
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2.3.3 Overview of a Genetic Algorithm

This section illustrates the general procedure to impldraestandard GA. This
procedure might in part change depending on the decisiods imathe various
aspects of the algorithm (see below). The pseudo-code prtdoedure is shown
in Figure 2.3.3.

INIT Genotypes with initial parameter values
WHILE stopping criterion is not reached
Create Population of individual phenotypes from genotypes
FOR each individual of the Population
Compute the fitness of the individual according to the FgR@sction
END FOR
Select the best individuals of the Population
Reproduce selected individuals thus reating a nuew pojoumatf Genotypes
Mutate the new Genotypes
END WHILE

Figure 2.1: The pseudo-code of a genetic algorithm procedure.

The application of a GA to find the parameters of a solutionn@jptimiza-
tion problem (e.g. a model to reproduce certain data) ire@few fundamental
algorithmic steps, each of which has several variants. Thediep consists in
encoding the parameters to be optimised in a numerical véitte genotypée
These parameters might for example be the connection veeadla neural net-
work, or its learning rates, or the time constants of différgub-sets of leaky
neurons forming the network, etc. As a second step, a centaimber pop-
ulation size of different genotypes of this type are generated, for exarby
drawing their values randomly within certain ranges. Thachegenotype (i.e.,
the set of parameters it encodes) is used to generate anaasth the model
(individual) so to have as many models as the genotypep(lationof individ-
uals). Next, each individual model is evaluated on the bafsise optimization
problem at hand: the better the optimization, the bettesdtwe {ithes3. The
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fitness is then used to select a subset of individuals of tpelpton that is used
to create a secongenerationof genotypes with the same population size. The
genotypes of the selected individuals are used to createaWwepopulation of
genotypes by randomly changing some parameters chosamatmamutatior)
and/or by mixing two or more selected individuals to form nemes €ross-
over). The whole process of fithess computation, selection, amigtion of
a new population is then iterated a certain number of timesper of genera-
tions). By iteratively letting parameters sets (genotypes)adpce on the basis
of their ability to replicate target data (fithess), and addiandom variations
trhough mutations and re-combinations, the evolutionaogcgss is eventually
able to find optimal candidate solutions.

2.3.4 Selection of the Parameters to Evolve, their Encodin@nd Ranges

An important aspect to decide before running the GA algoritoncerns the
parameters on which the GA should work. The definition of theameters
involves three main decisions. The first decision is abaagpects of the model
that will undergo the optimization by the GA. In this respebt parameters to
be selected to this purpose should have two features: (g)stiheuld represent
aspects of the model that it is not possible to set to padrotdlues on the basis
of known biological constraints; (b) one has good reasobslieve that they can
substantially affect the behaviour of the model with respethe target data.
The second decision concerns the data structures conceveicode the
selected parameters. Based on theoretical reasons aniitgyngyguments, the
initial proposals of GAs suggested to encode any type ofrpater with binary
codes (Holland, 1975). The following research, howeves, sfeown that GAs
work, or work even better, on data structures more simildh¢ofeatures of the
phenotype (often because it helps in compacting the sepades For example,
the most common case is to use parameters represented itoayed »n real
numbers; (for example to encode the connection weights or other catiaé
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aspects of a neural network; see Mitchell, 1998):

p={p1,p2, .., Pn} (2.3)

Alternatively, one might use discrete or even symbolic paaters to determine
gualitative aspects of the model, for example the partidelatures of the Heb-
bian learning rule used by the system or its architectunagets (Floreano and
Urzelai, 2000; Vonk et al., 2002).

The third decision involves the imposition of limits to thenge of values that
each parameter can assume. In principle, it is possibletablesh parameters
with free ranges. However, often the nature of the encodednpeters (e.g.,
learning rates, neural unit decays, neuromodulator eifjdaarning rule types,
etc.) impose biological constraints to the ranges of thévedoparameters. For
example, if some parameters encode the strength of glutagabr GABAer-
gic connections, they should be constrained to assumeatasglg positive and
negative values. As we will see in the present model of apalabther consid-
erations might also lead to bound the ranges of evolvingpeters also leading
to the advantage of reducing the size of the parameter spestig the evolu-
tionary process and reducing the risk that the search fallscal-optima (i.e.,
non-optimal solutions surrounded by worse solutions).

2.3.5 The Fitness Function

The fitness function is the means through which a particldaameter solution
Is evaluated. In our case, it measures the distance betweetata produced
by the model and the target data according to some matrix. #xrthat can
be suitably used in our case, borrowed from linear and noegli statistical re-
gression approaches, is the mean square évfStE, which takes the average of
the square differences between the target data elemieatsd their equivalent
b; provided by each phenotype:

| (ds = bny)’]

n

SMN,, = (2.4)
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After the fitness function is applied, the resulting fitnesghhbe scaled be-
fore being used to select the best individuals. The scaledsfit is a number
obtained on the basis of a particular function of the fithnedsex For example,
the scaled fitness of an individual might be the rank of itefgwithin the pop-
ulation (i.e., a number between 1 and P, where P is the sizgegbapulation).
The scaling allows tuning the relation between the perforweaof individuals
and their probability of selection (see below).

A last very important aspects related to the fitness and fiscgion to bio-
constrained models regards the fact that the target datatdwane all the same
importance. For example, within the points of a time serresmight give a high
Importance to a particular aspect of the curve with resgeanbther portion of
it. For example, one might want that the parameters found&y3A allow the
model to closely match some data points (e.g., a certainongagtulator being
precisely at the baseline level in a certain period of timbjlevtolerating some
inaccuracy for some other data points (e.g., the neuromtalulevel being at
some positive values in another period of time). An effec®olution to this
problem is to assign a different weight to the error of deéf@rdata points:

> [wj (dj = bpj)*

n

SMN,, =

(2.5)

wherew; represents the weights assigned to each data point. ThiBosols
rather important as it allows to quantify and operatioreaiige fact that one gives
high importance to particular qualitative aspects of thgdtdata.

2.3.6 Setting Other Features of the Algorithm and the relatd Metaparam-
eters

This section briefly describes the other aspects of a gealgfrithm that have
to be set before running it. These aspects are not specifieetagplication of
a GA to finding the parameters of a bio-constrained neuralatdait they are
Important because they affect the success and efficientyedlgorithm.
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Initial population.  There are various ways of defining the values of the initial
population of genomes. The simplest one is to generate thadomly on the
basis of a uniform probability distribution. A more effeaiway is to select
the initial genotypes so that they are (approximately) anmifly distributed in
the genotype space. This choice avoids generating tooasignotypes, and
reduces the possibility that the search falls in a localnopin.

Selection scheme. Once all individuals of one generation have been tested,
the selection scheme determines which individuals aretseldor reproduction
according to their fitness. A number of possible selectidrestes have been
developed, among which the most popular arerthaette wheeltherank, and
thetournamenselection schemes.

In the roulette wheel selection scheme individuals areesgnted as slices
in a wheel such that the size of each slice is proportionaktneds of the cor-
responding individual. The wheel marker then spins for aloamtime and the
individual selected for reproduction is the one correspamib the slice where
the marker stops. In this way, the probability of reproductior each individ-
ual corresponds to the fitness of the individual divided leytttal fithess of the
population. This selection scheme has the problem of pieeabnvergence: at
the beginning of the simulation the variance in the fithessigally very high so
the fittest individuals will tend to spread in the populatiary fast; then, when
the population has converged —meaning that all individimailse population are
very similar to each other— all the individuals will tend taMe approximately the
same fitness and hence the selection probabilities, sadugis will be selected
at random and this will prevent further improvements.

The rank selection scheme consists in selecting indivedwéh a probability
which is not proportional to their fithess, but which depeadghe ranking of
the individuals in the population. In the most simple and own rank method,
one sorts the individuals according to their fithess and dedectsn best indi-
viduals for reproduction. This method avoids that the papoh converges too
quickly by both preventing that the fittest individuals regce too quickly at
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the beginning of evolution, when the fitness variance is hagid keeping high
selection pressure afterwards, when the fitness varianoe.is
The tournament method can be described as follows: choasentiwidual

randomly from the population, select the fittest for repion, return the two
individuals to the population so that they can be chosemamyad repeat the pro-
cedure until you have selected the right number of indivMglu@his procedure
produces a selective pressure similar to that producedéyathk method, but
Is usually less computationally expensive than it as it @v@orting the entire
population, which can be very time-consuming.

Reproduction. Reproduction can be either "sexual” or "a-sexual”. The dif-
ference between these two reproduction schemes lies imthéhat the former
includes the application of cross-over between the genofrte® parents, while
the latter is based on the cloning of single genomes. Theleghkind of cross-
over is the single-point one: take two selected individue®ose randomly one
point for dividing the genomes of the two in two parts; getecme new individ-
ual by taking the first part of the genome from the first paredtthe second part
from the second parent and another by taking the first pamt thee second par-
ent and second part from the first parent. One problem in te®@tsingle-point
cross-over is that it treats different points in the genonfferéntly: in particu-
lar, the end-points of the genome strings are treated diitgr from the central
ones in that they will always be exchanged. One solution aditapt a double-
point cross-over: two points are randomly selected andegenents which are
exchanged are the two between those two points. Applyindléepoint cross-
over is like treating the genome as a circle, so that there idifference in the
probability of cross-over between the centre and the penpbf the genome.
An extreme variant of this solution is to take each paramafténe genotype of
the new individual from either one of the two parents with $aene probability.

Mutations. After having produced the right number of genomes by eitlmriog
individuals or by applying cross-over between pairs of peggmutations are ap-
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plied to those genomes with a certain probability. Therevar®us ways of mu-
tating the parameters of genomes, which depend on the garetonding that
have been chosen. If the genetic encoding is binary, mastonsist in flipping
the binary value of each parameter with a certain probgbilit the parame-
ters are real numbers, one can either replace the mutatmegwgiéh a randomly
chosen value or change the current value by adding to it eoranglue cho-
sen within a certain range on the basis of a certain prolalbiistribution, for

example flat or Gaussian.

Elitism. Whatever the selection and reproduction schemes chosencam

prevent that good solutions are lost by not being selecteloeorg destroyed
by cross-over and mutation by retaining the bestdividuals (one or more) and
assuring that they are included into the next generatidmouitany modification.

This can substantially improve the effectiveness of théug\amary research.

Stopping criterion.  Another thing to be decided is the criterion for stopping
the iterations of the algorithm. The simplest stoppingeciin consists in stop-
ping the research when a certain number of generations ievach This is very
easy to implement and ensures that the algorithm stopsafteed amount of
time. On the other hand, a lot of time might be wasted eitheabse the fithess
of the best individual of each generation has reached aguiatell before the
end of the simulation, or, even worst, because the evolatjoprocess has not
completed when the last generation has been reached andsd agution has
not been found due to the early stopping of the algorithm.

Another possible stopping criterion is based on the fitnéshaeobest indi-
vidual of a given generation: the algorithm stops whenelerliest individual
has reached a fithess that overcomes a given threshold. fii@son ensures
that the process stops only when a good set of parametersebaddund, but
has the problem that if a good set of parameters can not bel f@ureven if the
evolving population has converged on a local maximum) tgerghm can go
on forever. For this reason, this criterion is typically dg®conjunction with the
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previous one, so that the algorithm stops either when thesfi#tas overcome
the threshold or after a certain number of generations haea hccomplished.
An effective variant stops the research when the improvémgfitness of the
best individual in the last generations is below a certain threshold.

Another possibility is to stop the research when the vagasfdhe genomes
of a generation is below a certain threshold. The ratioralhat a very low
genetic variability means that the algorithm has converge@ good solution
(either local or global), and so a further improvement inef#s is unlikely to
occur. One shortcoming of this method is that it might be dlitfi to set the
appropriate threshold. Another one is that calculatingegervariance might be
time-consuming.

Replications. When evolutionary experiments are repeated several times b
using different starting conditions, often slightly or stdamtially different solu-
tions are obtained. This happens in particular when thetgpaspace is large
and/or when the fitness test is stochastic and involves @mplbcesses (e.qg.,
as those used in ALife, in particular when one evolves systiat learn during
the test). In this cases it is important to run the algoritravesal times so that
the parameters space is explored effectively.

Meta parameters. Most of the above specified methods have their own (meta-
)parameters that must be set for running the genetic afgoyifor example:
number of individuals in the population, number of bestwidlials to be selected
(if one uses the ranking method of selection), cross-ovemautation probabili-
ties, number of best individuals for elitism, number of gaeiens and/or fitness
or genetic variance thresholds, number of replicationb®fthole evolutionary
process.

All the decisions about the meta-parameters and the methodsbe taken
on heuristic grounds, because the best combination of rdethond parameters
crucially depends on the evolutionary research problemaath In fact, al-
though there is an entire community of researchers devotsuitly which kinds
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of methods work bests for which kind of problem (Evolution@omputation),
no clear rule has been found so far, and whereas many usefuhe¢hods are
being developed and a lot of knowledge on the pros and coniffefedht evolu-
tionary set-ups is being produced, the actual decisionslochwmethods to use
and on the meta-parameters must be taken by combining exp@siedge with
common sense and trial-and error. Nonetheless, it is irapbtb clarify that
whereas it might be difficult to find the combination of metb@ihd metaparam-
eters that works best in any specific case, it is not diffieufirid a combination
that is satisfying for our purposes, i.e. that can relialdyelxpected to find a
set of model parameters that is able to reproduce our tagjetinl case it exists
(provided that the evolutionary process is replicated rsgenes).

2.3.7 Falsification vs Validation

Once the search for the parameters of a bio-constrainedlrsoden, one can
obtain different levels of fit of the target data. One can se#réain threshold of
guantitative and qualitative level of such fit above whicathodel is considered
to have passed the test, and below which the model is coesidehave failed
it. The case of failure can be considered a form of weak faddibhn. Indeed, as
bio-constrained models tend to have several parameter®dredvery complex,
the failure might depend on the fact that the GA felt in a laoatima and not
on the fact that the model is not sufficient to reproduce thgetadata. Notwith-
standing this limit, it is important to consider that suclsifécation is however
much stronger than, for example, a falsification based onrauaiaearch for the
parameters.

In the case the model passes the target-data test, thistatidshould be
never considered a definitive confirmation. In fact, as nogetl above, bio-
constrained models often contain some hypothesis and mischs that com-
putationally are capable of producing certain needed fonstbut that are not
supported by direct biological evidence. Moreover, biostoained models of-
ten contain a large number of parameters. On one side thistifigd by the fact
that they are required to satisfy many constraints, namatiypnly the request to
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fit target data but also the constraints imposed on its actute and function-
ing. On the other side, however, this increases the powgithiat an excessive
number of parameters are introduced so that the number oéeegf freedom
of the model exceeds the number of constraints imposed on it.

One way to further corroborate the model is of course to emed¢he number
of constraints imposed on it, both in the form of the requieairio reproduce and
account for further target data (e.g., from other experis)enr to impose further
biological constraints on its architecture and functigmmechanisms. The other,
even more important, way is to derive from the model new tezhs and test
them with new empirical experiments.

2.4 The case study: modelling the appraisal of controllabity

2.4.1 Target Data Analysis

The model is required to provide an explanation of the meishamnesulting in
the releases of DA and norepinephrine (NE) in the ventrotah@defrontal cor-
tex (vmPFC) and the release of DA in nucleus accumbens (Ndedhg re-
straint tests run with rats (Pascucci et al., 2007). Theassgs in the vmPFC
have been recorded on naive rats only, whereas DA relealse MAcc has been
recorded both on naive rats and on rats repeatedly subjertedtraint (Cabib
and Puglisi-Allegra, 1996): see figures 2.2 and 2.3 respaygti

The test consists in placing each rat in a restraint box,ikgapimmobile by
leaving only the head outside the box (more details in Paseda@l., 2007): the
microdialysis samples in naive rats (labelled as "day 1’hm graphs) were col-
lected every 20 minutes for the whole duration of the expenim240 minutes-
generating 13 samples (first sample collected at time O)redsein the case of
the rats repeatedly exposed to the stressor (labelled gs6dm the graphs),
the 13 samples have been collected in 120 min. using a 10 ntarval, in rats
exposed to restraint once per day, 6 days in a row. Using trspeetive of the
GA the target data consist of 4 time series (two for the raogsiof the two
neuromodulators in the vmPFC and two for the recordings offbiAcc in the
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Figure 2.2 NE (left) and DA (right) releases in vmPFC recorded with raéialysis in rats subjected to restraint
(modified from: Pascucci et al., 2007).

two different conditions), each encoded in a vector of 18mambers, for a total
of 52 data points.

An analysis of these target data gives an example of the meabyp it is not
useful to use the GA to pursue only a quantitative match aat dhalitative
goals should be taken into consideration as the main otgectror instance,
the pictures in figure 2.3 (modified from Cabib and Puglidegta 1996; Pas-
cucci et al. 2007) show data recorded during the same typgpafrenent and
performed in the same laboratory, on different rats: e.@ graphs point out
that the highest peak of DA in NAcc is reached after 20 minutdsoth cases,
but the single value is significantly different (+75% vs +50%he basal level),
so that the vector of the time series results in quantitatifferences. Yet, the
dynamics and the slopes characterising the two curves gmdisantly similar:
the presence of DA in NAcc shows a fast increment and a siregd pfter 20
mins, before starting a constant decrease which lasts éowtiole experiment.
These considerations imply that the timing of the NAcc DAkpeoduced by
the model has a major importance if compared with the acalakewvhich may
tolerate variances. The problem described for the DA rengsdis not unique:
all the recorded data belonging to the target time serieslaeacterised by sim-
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Figure 2.31 Meso-accumbens DA releases recorded with microdialystasinrats, both subjected to restraint
(modified from: Pascucci et al., 2007 and Cabib and Pugligta, 1996, respectively). Since test and recording
procedure can be considered identical, it is possible tqoewatthe first 120 minutes of the left figure with the whole
day-1 dynamics showed in the right figure: note the quamvidalifference and the qualitative similarities between
the two curves.

ilar differences.

An important decision about the target data is whether tciden all the
points of the time series as equally important or to requifferént degrees of
accuracy for different sub-sets of the data. The example pr@posed addresses
the psychobiological problem of finding the mechanism tlegtutates the re-
lease of dopamine in the NAcc in the two conditions of naivd awvertrained
rats: Pascucci et al. (2007) found that both below- and abageline releases
of DA in NAcc are determined by the activity in the vmPFC (atsdmodulation
performed by DA and NE), entailing the role of guidance ofwth&FC in gen-
erating the target effects in the two conditions (more detaichapter 3 of this
thesis).

Thus, the optimization process should produce a model #emgtes time
series with these features: the presence of DA in NAcc must shfirst peak at
the beginning of the experiment in the naive condition, mitin the repeatedly
exposed one. This peak must be temporally tuned with bothpiraks of DA
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and NE recorded in the vmPFC. On the contrary, the two canditimust not
show significant differences in the second part of the expent, when limbic

DA decreases showing a release below the baseline. Fitialgaccuracy of the
dynamics characterising DA in NAcc must be given a higheonsi if compared

with the one characterising the two releases recorded inrttie=C, which are
nonetheless going to be considered as successfully sedufahey will show a

substantial qualitative match with the target data.

2.4.2 Definition of the architecture of the model

The core neural systems of the model relies on the two araharth responsible
for the release of DA and NE (the Ventral Tegmental Area, VaAd the Locus
Coeruleus, NE, respectively), and the ventro-medial Bre&l Cortex (vmPFC),
which is considered to be responsible for the role of guidasfcthe dynamics
of DA in NAcc: for a detailed description of the architectwkthe model, its
functioning and its computational features, see chaptee®3.2, of this thesis.

In rats, vmPFC is mainly composed of the PL and IL corticese phesent
model is based on the hypothesis that during prolonged astapable stress-
ful conditions the IL learns to inhibit the PL, which is assedirto control goal-
directed behaviors (Yin and Knowlton, 2006). As a conseqagean anti-Hebbian
learning rule is implemented between PL and IL, which is as=ilito play a piv-
otal role in explaining the complex dynamics that charasgésrthe target data.

Given the particular connectivity bridging the vmPFC anelYfTA (Carr and
Sesack, 2000; Jackson et al., 2001) and considering thetampoole the Amyg-
dala (Amg) plays in any emotionally-driven behaviour andamtrolling the ac-
tivity of both LC (Pitkanen et al., 2000) and VTA (Ahn and Phillips, 2002; Fudge
and Haber, 2000), this neural system has also been addeel noatthel. Finally,
all the connections bridging the various neural componehtise model, corre-
sponding to either glutamatergic or gabaergic connectluage been selected on
the basis of the anatomical empirical evidence existingténdture (see figure
2.4).

This brief description of the procedure followed to desige architecture of
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Figure 2.4. Evolution of the neural architecture of the two model. The jpécture represents the first developed
version, which the GA showed to be unable to replicate ajigtdata (falsification). The right picture represents the
model that succeeded in reproducing all target data (uédiala Continuous red and blue lines represent, respec-
tively, glutamatergic and GABAergic connections, wherelagk lines represent the input. Dashed lines represent
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the model, based on the incorporation of biological comstisaexemplifies how
easily the complexity of the agent’s neural network incesaand hence how eas-
ily the problem of setting the values of all its parametery fmecome unfeasible.
Indeed, it is be possible to design architectures capaliepodducing the same
target data reproduced here while not incorporating thiegical constraints re-
lated to the investigated phenomenon: these architectuwesd have a much
simpler architecture and functioning and by far fewer patars. However,
these architectures would not be useful to accomplish teeativgoal of this
research as they would not allow to understand the detari@id mechanisms
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underlying the investigated phenomena. Moreover, in thg lun they would
miss the important goal of accounting for an increasing nemalb experiments
while keeping intact the core principles of the model.

2.4.3 Selection of the parameters

The architecture has about 30 connection weights, sevasalines assigned to
the dopaminergic and noradrenergic areas (which simufeecttivities these
populations have independently of external input), de@gsr characterising
leaky integrators, reuptake and depletion rates for eaalongodulator, a Heb-
bian learning rate, and several coefficients used to sim@dditive and multi-

plicative effects of the neuromodulators on target areas.

Each of these parameters may be incorporated in the vegicesenting a
genotype of the GA. However, in this case the parameter spaa&d be huge
and, consequently, the search for an optimal set of parasieyehe GA would
be very time consuming and subject to falling in local optifRar these reasons,
it was necessary to work on the list of the possible paraméteselect those to
be optimised by the GA and those that could be set by hand: pamaneters
were excluded on the basis of biological constraints (thg.leaky decays of the
neural units had to be consistent with the actual decayseofi¢tiral population
they simulated), some were set to 1 as the rest of the systeamasgumed to
be able to compensate a possible wrong choice using the fotleeparameters
(e.g., the value of 1 was used for most weights bridging tpetisignal to their
targets).

Section 2.3.4 briefly described the problems arising froenstblection of the
ranges of each parameter. In this case, most of the weigsitnasl to the con-
nections vary from a minimum of 0.3 to a maximum of 5 (and thesgent neg-
ative for inhibitory connections): this choice is causedtty attempt to avoid
disproportional connection weights. The two exceptiormerning PL-VTA
connectivity) were introduced as the GA tended to find vatiese to the lower
limit. As a consequence, this limit was lowered but not séd &s biology pro-
vides a clear constraint concerning the existence and irapog of those specific
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connections (these connections might be necessary tonmepleother important
functions, so we wanted to see whether the system could ladbleapf tolerating

their presence when simulating the target data). Thisrmrieof the change of
the range limits depending on the resultsf of the GA was as&full for setting

the ranges of the parameters that had minor or no constrdamsistance, the
values corresponding to the levels of DA and NE in cortex imegpondence of
a depletion.

Finally, the additive coefficients of the neuromodulatoes@forced to evolve
low values,0.1 < value < 0.4, in order to prevent the GA from finding high
values of the additive component with respect to the mudtplve components,
as this would have made the function of neuromodulatordairto that of neu-
rotransmitters. Final values are showed in table A.2.

2.4.4 GA Fitness function and meta parameters

The model was implemented in Matl@pusing the Matlalf) GA toolbox for
the genetic algorithm. We briefly present here our most itgmbichoices for the
meta-parameters and the main features of the chosen faoachiot it is important
to note that most of the GA options were left to the defaultigal

The population consisted of 200 individuals and the evoiuivas run for 200
generations (fixed number). The parameters were normahsee value < 1
to make the mutation ranges homogenous for all parametéesinitial values
of the genotypes of the population were chosen to be appeaiglgnuniformly
distributed on the whole space of the parameters (see appéaiolA.2) based
on the function "feasible”.

The scaling function chosen was "Rank” (default option)t thacodes the
fitness values into the numerical ranks of individuals. Wehbpect to elitism,
a single individual characterised by the best fithess wasearnto be replicated
without any cross-over and mutation (elite = 1). The othdnialuals of the new
population were created in two ways: 80% with both crossewsl mutation,
and the residual 20% with mutation only (default options).

The function chosen to perform the selection of individuaés "stochastic
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uniform” (default option) which for each individual genexa a number of off-
spring proportional to the ratio between its fithess and thal ffithess of the
population. The function chosen to perform the crossoves isaattered” (de-
fault option) which produces each individual based on aoamskelection of each
parameter from either parent. The mutations were perfoused the function
"adaptive feasible”. This function performs random muias biased toward or
against the direction of the last mutation depending ondlethat it increased
or decreased the fitness (the size of the mutation diminigthesn a limit of a
range is approached).

Finally, a weighted mean squared error was used as fithessgnam) a weight
of 10 to the square error related to the curves describinBgeelease in NAcc,
in the naive condition. All other point data were assigneceagiv of 1.

2.4.5 Tuning the architecture using Genetic Algorithm

The first model investigated was unsuccessful as the GA ghéwvbe unable
to find the parameters that produced a satisfactory fit ofdlget data. In par-
ticular, the simulated DA dynamics in vmPFC and NAcc during $econd part
of the experiment showed substantial qualitative and gtadime difference with

respect to the target data (see figure 2.5).

An analysis of the best individual performance made it cteat during the
second part of the experiment the system required a posiipe reaching the
mesocortical module of the VTA and a negative one reachiegmiesolimbic
module of the same system. The timing of these two missingassgis the
same and — taken for granted the biological constraint thatcortex has the
role of guidance of the described dynamics during stressigep both signals
must directly or indirectly originate from the change ofiaty characterising
the vmPFC (see figure 3.5¢,d).

The literature provides evidence that this new neural systeyy be repre-
sented by a channel of information starting from the Hyplatimais (Hyp) and
periaqueductal gray (PAG) and reaching the VTA via Dorsagliea(DR): the
latter system is controlled by the activity of the vmPFC (feayet al., 1998;
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Figure 2.5. Simulation of the releases of neuromodulators (NE in vmBAEfE, DA in vmPFC, centre; DA in
NAcc, right) recorded during a test performed on "naive”rgausing the early version of the model (which does
not have the Hyp/PAG/DR component). Note the differenceBérright parts of the graphs, when comparing them
with the target data (figure 2.3 and 2.2).

Radley et al., 2009) and it is known to have an important rolexperiments
concerning the lack of control of aversive stimuli (Amat &t 2005). For the
purpose of this model, these systems can be considered layiimere a sin-
gle channel (Hyp/PAG/DR) because they both concur to theigcof the VTA
with the same dynamics and timing (Bandler et al., 2000; |[ée&t al., 2007).
The neural architecture of the model was then modified acogigdand the GA
could be run again with few additional parameters.

This time the GA proved to be successful (see fig. 2.6, vatigahe hy-
potheses underlying the model, and providing a useful toopfoducing new
predictions to be empirically tested. The fitness (mean reqaeror) reached
by the best individuals of the two models are slightly défet. the first model
(without the Hyp/PAG/DR component) reached a fithess of2E2whereas the
second one reached a fitness of 22.2543 (with a differendecnitd 3.45%).

Still, considering the high variances found in the biol@gimicrodialyses,
the rough information provided by the fitness value is notigeht to establish
a strong preference between the two models concerning lii@ogical accu-
racy. However, the qualitative comparison between the twdehclearly speaks
in favor of the second model and against the first one: thetalgnamics and
the slopes which have been considered as important by tleglsts are clearly
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replicated by the second model but not by the first one (seariicplar the dy-
namics characterising the second part of the experimessn®acoping phase-
in figures 2.3 and 2.2).

This whole process of weak falsification and validation ii@plthat the as-
sumptions underlying the second model, in contrast to tbbfee first one, are
sufficient for explaining the available empirical data, aadh thus be plausibly
considered as representing the mechanisms that take plélce brains of real
rats in conditions of long-lasting, inescapable stresstulditions. Hence, the
model can now be used for producing new predictions to bedastnovel em-
pirical experiments.

2.5 Results and predictions

Once the model manages to successfully replicate the tdejat the causal
processes taking place in the simulated agent can be coedideeliable sim-
plification of the actual functioning taking place in reatsauring the target
experiment. Thus, the established analogy between the Imaodethe actual
brain of the rat allows drawing several important conclasiabout the causal
processes realising the appraisal.

The model pushes forward the hypothesis that the evaluafitime stressor
controllability is a consequence of the interaction betwkeand PL, which al-
lows detecting discrepancies between actual and expeatedroes associated
to performed or attempted actions. Initially, restrainats rexecute actions be-
longing to their repertoire to try to actively cope with th@wstressing condition,
pursuing the goal to put an end to it. During this phase, theeeted action-
outcome association is provided by the PL, whilst IL progidiee "mismatch
control” being activated by the presence of significanteddhces between the
actual result of the attempted action and the expected calée{Be and Dickin-
son, 1998; Coutureau and Killcross, 2003; Killcross andtG@au, 2003).

This control is performed via a direct inhibitory effect llation PL and via
a broad opposing influence these cortices have on variousatibal areas: the
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Figure 2.6. Simulation of the releases of neuromodulators (NE in vimPe&f€ DA in vimPFC, centre; DA in NAcc,
right) recorded during a test performed on "naive” and "adpdly stress exposed” agents using the final version
of the model (characterised by the presence of the Hyp/PRGiBural area). Note all "day 1” dynamics, which
almost perfectly match the target data and "day 6” DA in NAgoaimic, which matches its target and establishes
a prediction (time series of target data lasts 120 minutagiwis half of the simulated time). All other simulated
releases (day 6 and day 12) represent the model predictimeoang releases of the neuromodulators.

more the action-outcome associations fail, the more ILgases its inhibition
(in the model, via anti-Hebbian learning): the progressuppression of PL
outputis the neural correlate signalling the fact thatgeaetion belonging the rat
repertoire is failing in removing the stressor. When PL impétetely inhibited,
the desired outcome is no longer pursued because it is fieadlyated as beyond
the possibilities of the agent: therefore, in the presepeamental conditions,
the stressor is perceived as uncontrollable.

The end of the process resulting in the appraisal of coatooity coincides
with the switch of coping in naive rats: the active copinga@cterised by high
DA in NAcc e high NE in cortex, is triggered by high neural &iti in PL. As
soon as PL is inhibited by IL, a cascade effect involving Amd &lyp/PAG/DR
eventually affect DA releases, causing the dynamics desdrior the passive
coping.

It has been mentioned that after six repetitions of the aesdttest (one test
per day) sham rats exhibit a NAcc DA level which never goesralibe base-
line in the first phase and decreases below baseline aft80 @ns (figure 2.3).
At the same time the rats show no initial behavioural attetogctively cope
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with the stressing condition. The model supports the hygmththat repeated
experiences of the stressing test make rats learn that ibg&sstg condition it

IS experiencing is not controllable: the appraisal of colfdbility is then eas-

ler because the cortical interaction between IL and PL hasady partially or

completely inhibited the association between actions @&streld outcome in the
recognised restrained conditions.

The model provides a specific explanation for the descrilbethpmenon, as-
cribing the dynamic of DA in NAcc to the presence of NE in crrtafter 6 ex-
posures, the partial inhibition of PL results in diminishithhe input reaching the
LC (directly from the cortex and indirectly via the Amg). Ag&ansequence, LC
Is unable to release the initial high large amount of NE badkeé cortex (figure
2.6, left), resulting in a furthered diminished activity f. and -consequently-
in Central Amg (CeA) and therefore, in the absence of theainiteak of DA
generated by the mesolimbic area of the VTA.

This prediction is consistent with the known positive causkationship be-
tween NE in vmPFC and DA in NAcc, which has been describedyusstective
cortical depletion (Pascucci et al., 2007) and is part oftieessfully simulated
data gained using the present model (see chapter 3, sec. 3.3)

The simulation of the repeated experience has been sedteadthening the
initial weight of the synapses bridging IL to PL: this chogsmulates the fact that
there has been already a learning process taking place dretive two cortices,
followed by a spontaneous partial recovery. Interestintjlg starting point is
rather arbitrary and once found the parameter allowingithalation of the data
characterising 6 repeated exposition, it is possible tdtothat amount to have
a hint of the results of a stressful experience repeatedaevmre times (the
values of 0, 1 or 2 have been used respectively for the dayyl6 @dead day 12
simulated test).

Simulating the case of day 12 of repeated exposures to the saessor:
the model predicts that the rats would show an immediatesdserof NAcc DA
below baseline, starting the passive coping strategy asa®the agent perceives
the presence of the stressor. The mechanism realisingthauc relies once
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again on the inability of PL to activate the response of the(afd the initial
high release of NE), but this time activity in PL is not evefffisient to inhibit
Hyp/PAG/DR which consequently almost immediately enhaheeactivity of
the circuit involving the mesocortical DA (which reaches ihaximum earlier
than in any other test) and IL: this circuit indirectly infigothe dopaminergic
area of the mesolimbic VTA, thus determining the immediaassage to the
second phase (corresponding to an immediate behaviolsphule

This complex interaction among several neural areas isistens with both
unpublished material concerning DA release in NAcc (expents carried out
by the same group providing the target data for this moded)wvaith published
data concerning serotoninergic release (related to DRiggtin a different set
of experiment relying on uncontrollable stressors (Amatlet2005; Maier and
Watkins, 2005, 2010).
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Chapter 3

Corticolimbic catecholamines In stress: A
computational model

Abstract

The brain determines what is stressful and on this basislaggsl physiological and be-
havioural adaptive responses. Converging evidence ass@major role to catecholamines
in these processes: in particular, data show that tonic porephrine (NE) and dopamine
(DA) outflows in the ventromedial prefrontal cortex (vmPHR€Julate DA outflow in the
nucleus accumbens (NAcc). As frontal cortical areas arelirad in the appraisal of en-
vironmental challenges, and DA transmission in the NAcauslived in active and passive
coping, the interplay between cortical NE and DA in the coed subcortical DA could
translate the appraisal of the stressful experience inéorttotivational state required to deal
with it adaptively. This paper proposes a computationakesyslevel model of the brain
mechanisms underlying these processes, grounding it ee tkey hypotheses: (a) vmPFC
NE allows prelimbic cortex (PL) to guide active coping stgies and energizes these re-
sponses by enhancing NAcc DA outflow; (b) vmPFC DA allowslindbic cortex (IL) to
block active coping attempts, when these are unsuccessfulecreasing NAcc DA levels
below the baseline; (c) learning processes involving IL &idlead to the transition be-
tween coping strategies. The model, whose architecturesrein known functional and
structural connectivity of the brain areas involved, isigated by reproducing the fluctua-
tions of target catecholamines measured in three conditi@mam, vmPFC NE depletion,
and vmPFC DA depletion. The model represents the first iatedroperational explana-
tion of the investigated phenomena and produces predgtibat can be tested in future
empirical experiments.

3.1 Introduction

Stressful eventssfressor¥ are experiences that an organism appraises as dif-
ficult to control or avoid by relying on its current repermior physiological,
behavioural, and psychological reactions (Anisman anchi¥kan, 2005; Folk-
man et al., 1986; Huether et al., 1999; Lazarus, 1993; UrsinEaiksen, 2004).
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After a first primary appraisal, which leads to an event asidgpeiassified as
challenging, the organism implements an active copingegjyabased on suit-
able responses (Ganzel et al., 2010; McEwen, 2007). Thrawggtondary ap-
praisal the organism establishes whether the stressomisotlable/avoidable
through active coping strategies, or uncontrollable/ordable, thus requiring
a shift toward a passive coping strategy aimed at savingggraerd resources.
Converging evidence suggests that stress appraisal gescewolve the frontal
cortices (Amat et al., 2005; Maier and Watkins, 2010; Ohtralge 2008; Phan
et al., 2004; Salomons et al., 2007; Wager et al., 2008).

The dynamics of cortical and limbic tonic amines play a kdg o the brain
reaction to stress (Amat et al., 2005; Bland et al., 2003;ilCand Puglisi-
Allegra, 1994; Cabib et al., 2002; Inglis and Moghaddam, %t 99aier and
Watkins, 2005; Pascucci et al., 2007; Puglisi-Allegra gtl&91). During stress-
ful experiences, increased tonic dopamine (DA) levelsiwitlucleus accumbens
(NAcc) are associated with the expression of active copiragesyies aimed at re-
moving or escaping the stressor (Cabib and Puglisi-Allegy@@4; Cabib et al.,
2002; Grappi et al., 2003; Mangiavacchi et al., 2001; Rada.et1998; Scor-
naiencki et al., 2009). Instead, decreased levels of toAicmMNAcc are associ-
ated with the implementation of passive coping stratedrapérato et al., 1993;
Mangiavacchi et al., 2001; Pascucci et al., 2007; Pothos.,e1205; Puglisi-
Allegra et al., 1991; Rossetti et al., 1993). These obsenvaitare consistent
with a widely shared view according to which tonic mesoadsens DA sup-
ports response vigor in pursuing costly goals (Cagniard.e2@06; Floresco
et al., 2008; Niv et al., 2007; Salamone et al., 2003).

In this paper we propose a system-level model that explamslow dynam-
ics of tonic catecholamines involved in the appraisal amq@rgpof long-lasting,
inescapable stressful situations, focussing on the brashamisms through which
NE and DA levels in vmPFC regulate DA levels in NAcc. The maypdtheses
pushed forward by the model are: (a) high NE in vmPFC allovedimibic cor-
tex (PL) to contribute to performing goal-directed behaviand to increasing
NAcc DA via its control over sub-cortical regions such asdhgygdala; (b) high
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DA in vmPFC allows infralimbic cortex (IL) to drive NAcc DA iels below
baseline both via its connections to VTA and to various soittical areas; (c)
learning mechanisms leading IL to progressively inhibitdaluse the transition
from active to passive coping strategies. The model reptegie first inte-
grated operational explanation of the investigated phemanand can be used
as a framework to produce predictions to be tested in enapexperiments and
to build more detailed models, e.g. for investigating hurpatihologies such as
depression.

3.2 Methods

3.2.1 The target data: microdialysis experiments in sham ath vmPFC
DA/NE depleted rats

The target experiments tested the causal relationshipeestvgtress-induced
changes in NE and DA outflow in vmPFC on DA in NAcc (evaluatedrisac-
erebral microdialysis) by means of a selective depletioaawth catecholamine
in the vmPFC through local infusion of a neurotoxin 6-hydmapamine (6-
OHDA), following selective protection of NE or DA by periptad administration
of desipramine or GBR 12909 respectively (see Pascucci20@¥, for method-
ological details). Throughout the experiments rats welgesiied to restraint, a
common psychogenic stressor (Figueiredo et al., 2003).

Sham-depleted (Sham) animals showed the same patterntichtand sub-
cortical stress responses as observed in non-manipulatedRascucci et al.,
2007). The immediate impact of the novel stressful expeagromoted an in-
crease of NE and DA in dialysate from the vmPFC that peakeddmst 20-40
min from stress onset and then declined. However, the isereaNE levels
was much larger than the DA increase (35-40%) and once haeotined to
pre-stress (baseline) levels it stabilized and remainetiaimged throughout the
stressful experience. Instead, DA levels showed a secasdgred stabilized to
a plateau of 70% of baseline levels. Changes in DA levelsalysgate samples
collected from NAcc were characterized by a peak increaf@m®20 minutes



3.2. Methods 44

NE in vmPFC, real data DA in vmPFC, real data DA in NAcc, real data
250% . S— 150% — . — 150% ———— ———
— — —baseline — — —baseline — — —baseline
NE depl. NE depl. 1259 NE depl. |
200% DA depl. 1 DA depl. DA depl.
wifh= Sham 100% == Sham == Sham

100%

150%
75%
50%

100% 500 B

50% 25%

0%

0%
0%

-50% 2%

-50%

=50%

-100% -75%

1008 o 80 120 160 200 220 0 40 80 120 160 200 240

(a) (b) (©)
Figure 3.1. Levels of NE (a) and DA (b) measured in the vmPFC, and DA meakiarNAcc (c), during four hours
of restraint experiment run in three different conditioesbam, depletion of vmPFC NE, and depletion of vmPFC
DA. Modified from Pascucci et al. 2007
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from stress onset followed by a decline below basal levelsrached a plateau
(-40% of baseline) by the end (240 minutes) of the stressfuteence (figures
3.1a-c).

The depletion procedure did not influence baseline levelsatécholamine
measured following 3 days of recovery from the surgery. eadt depletion of
each catecholamine in the vmPFC had specific effects on titiealcand sub-
cortical stress responses. NE depletion selectively ptedestress-induced NE
outflow in vmPFC and DA outflow in NAcc, whereas DA depletiotestvely
prevented the later large increase in cortical DA and thecaton of NAcc DA
below baseline levels (Pascucci et al. 2007 and figures@.Tae experiments
targeted with the model (Pascucci et al., 2007) involvesl izt were restrained
for four hours, a condition that is known to be highly streséfFigueiredo et al.,
2003). Figures 3.1a-c show the levels of NE in vmPFC, and ofibamPFC
and Nacc - measured during the experiment through micisigat as percent
changes with respect to the mean of three samples colleatedgthe stressor.

These data demonstrate a positive causal relationshigebatiNE in vmPFC
and DA in NAcc and a negative causal relationship betweendo¥mPFC and
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DA in Nacc, in agreement with other results obtained witfedént stressors and
methods (Cabib et al., 2002; Deutch et al., 1990; Doherty Gratton, 1996;
Scornaiencki et al., 2009; Stevenson and Gratton, 2003uxéeet al., 2002).

Table 3.1 List of key references supporting the connectivity of the mdel

DA targets in Nacc (Carr and Sesack, 2000)
DA targets in vmPFC (Briand et al., 2007)
(Margolis et al., 2006)
(Lammel et al., 2008)
NE targets in vmPFC (Glavin, 1985)
(Aston-Jones et al., 1999)

(Briand et al., 2007)
(Radley et al., 2008)

IL-PL relation (Coutureau and Killcross, 2003)
(Vertes, 2006)
vmPFC regulation of the VTA (Carr and Sesack, 2000)
vmPFC control over the Hyp/PAG/DR (Radley et al., 2009)

(Vertes, 2006)
vmPFC differential control over CeA and ITC in the Amg (Vidal-Gonzalez et al., 2006)
(Vertes, 2006)
(Peters et al., 2009)
the Hyp-DR channel towards the mescortical VTA (Geisler et al., 2007)
CeA control over the mesolimbic VTA (Wallace et al., 1992)
(Ahn and Phillips, 2002)
(Floresco et al., 2003)
(Grace et al., 2007)
OFC-ACC regulation of the LC (Aston Jones and Cohen, 2005)
CeA regulation of the LC (Berridge and Waterhouse, 2003)
(Curtis et al., 2002)

3.2.2 The biology behind the model

The explanation of the phenomena and target data presertiee previous sec-
tion called for the design and implementation of a systevetlimodel involving a
rather large number of neural systems and two neuromodsldtaeed, the ini-
tial analysis of the relevant neuroscientific literaturggested that the dynamics
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of NAcc DA and vmPFC NE/DA in stressing situations arise outhe inter-
action among several different brain areas rather than Bpetific processes
occurring in isolated areas.

Figure 3.2 shows the functional components of the model hadrtain re-
lationships among them. The detailed circuits of the modkshown in figure
3.3.

The appraisal of a stressful situation is based on the dlailaformation
about the external environment and the organism’s phygicdéband psycholog-
ical state (Folkman et al., 1986; Lazarus, 1993). Infororatibout the stressful
condition has four different targets in the model. The fissthe orbitofrontal
cortex (OFC) and the anterior cingulate cortex (ACC), irredl in emotional ap-
praisal and stress perception (Pruessner et al., 2008)séduand is the vmPFC,
involved in the modulation of classic stress responsegi®et al., 1993; Radley
et al., 2006; Sullivan and Gratton, 2002; Tavares et al.920fased in particular
on its role in the performance of goal-directed behaviout laabitual response
regulation (Balleine and Dickinson, 1998; Coutureau antti€iss, 2003; Kill-
cross and Coutureau, 2003). The third is the central nuckaygdala (CeA),
which is involved in emotional and behavioural stress rasps (Koob, 2009)
and is also responsible for the regulation of various neodutatory systems in
stressful conditions (Davis and Whalen, 2001). The fountth last is a group of
brain areas classically associated with physiologicallsithvioural (especially
Innate) responses to stressors, namely the hypothalanym, (pkriagueductal
gray (PAG), and dorsal raphe nucleus (DR; Herman et al. 2008y and Ban-
dler 2001; Maier and Watkins 2005).

Convergent empirical evidence supports the idea that Pllaodrtices play
a key role in stress coping. First, it has been demonstrdiadRL activa-
tion constrains, whereas IL activation facilitates, dagdhysiological stress re-
sponses (Diorio et al., 1993; Radley et al., 2006; Sullivad &ratton, 2002;
Tavares et al., 2009). Second, PL and IL play opposite roldsar reactions,
with PL enhancing and IL inhibiting them (Peters et al., 2088tres-Bayon
and Quirk, 2010; Vidal-Gonzalez et al., 2006). Third, PLngdlved in action-
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outcome learning and goal-directed behaviour expressimreas IL is involved
In switching to a stimulus-response behavioural mode @dadl and Dickinson,
1998; Coutureau and Killcross, 2003; Killcross and Cowure2003). Finally,

IL and PL are richly interconnected and most of their oppganfluences on be-
havioural and physiological responses involve these adiores (Vertes, 2004,
2006). The model is based on the following hypotheses: Pyspakey role in

the expression of goal-directed behaviour after the pynagupraisal and con-
trols input processing in various sub-cortical areas; Pinterplay contributes
in implementing the second appraisal which leads to thergkgbase; IL control
over PL and various sub-cortical areas during the seconsklkaesponsible for
the shift to passive coping.

Stress-induced changes in DA levels within vmPFC and NAecraainly
caused by the ventral tegmental area (VTA) projecting ¢Alleercrombie et al.,
1989; Barrot et al., 1999, 2000; Inglis and Moghaddam, 18@8@yas and Duffy,
1995). vmPFC and NAcc receive DA afferents from differenpylations of
VTA DA cells and these are controlled by different and laygatdependent cir-
cuits (Briand et al., 2007; Carr and Sesack, 2000; Lammdl,e2@08; Margolis
et al., 2006). In the model, these two different VTA populas (respectively
called mesocortical VTA -mcVTA- and mesolimbic VTA -mIVTAsee figure
3.2), play a key role in the decoupled dynamics of vmPFC DA [dAdc DA
levels measured in the target experiments (see below)ssSinduced changes
of NAcc DA levels are slow and detectable by intracerebrakodialysis (Cabib
and Puglisi-Allegra 2011 for review), which suggests tihatytdepend on tonic
or population firing of VTA dopaminergic neurons (Flores¢ale, 2003; Grace
et al., 2007). VTA also receives afferents from the centualeus of amygdala
(CeA): the inhibition of CeA, and hence of its inhibitory mto VTA, leads to
an increase of NAcc DA (Ahn and Phillips, 2003), suggesthmg this input is
part of a double inhibition mechanism (cf. also Florescd.€2@03; Grace et al.
2007). For these reasons, the model hypothesises that@aacrease NAcc
DA levels via a double inhibition mechanism involving CeAdadlriven by both
direct stimuli from the environment and a strong modulatrom vmPFC. These
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Figure 3.2 Functional representation of the architecture of the moblak simplified representation shows the net
excitatory/inhibitory influence that each component hathertarget components, and not the nature of the specific
neural pathways connecting them. The text in the boxes atelicthe main functional role that the components
contribute to implementing in the model with respect to thpraisal of stimuli and the consequent stress responses.
processes are functionally summarised in figure 3.2, whidws a global ex-
citatory effect of Amg activation on mIVTA activation and arcitatory effect
exerted by vmPFC on Amg (the weak effect of PL on VTA is omiftedn figure
3.2 for clarity; see figure 3.3 for the detailed circuits).

Stress promotes an increase in tonic NE levels in the vmR#€<nicrement is
due to the vastly diffused efferences originating from thlatively small group
of cells of locus coeruleus (LC; Aston-Jones et al. 1999riBge and Water-
house 2003; Glavin 1985; Valentino and Van Bockstaele 20010 receives
strong convergent projections from the OFC and the ACC, lwhave been sug-
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gested to drive transitions between phasic and tonic medi&ineurons to fit
the behavioral/cognitive states with environmental cbods (Aston Jones and
Cohen, 2005). LC activity is also modulated by CeA (Curtislet 2002) via
a significant innervation of the pericoerulear region (Bkye and Waterhouse,
2003) and through the excitatory corticotropin-releasingnone (CRH; Bouret
et al. 2003; Jedema and Grace 2004; Van Bockstaele et al).2001

Tonic neuromodulator releases involve receptors thatifiezehtially located
among the layers of the cortex, so that the same neuromodutaty differently
affect its target subregions depending on the receptocdiviades. For example,
the NE has different effects on target cortical areas ddpgnah its concen-
tration and on the distribution of alphal and alpha2 reasptarnsten, 2009;
Briand et al., 2007). Based on these possible differenfiatts that NE can
cause in different target areas, the model hypothesisedlthincreases the ac-
tivation of the PL neural population connected to Amg and /6/DR (thus
increasing DA release in NAcc) and inhibits the activatiothe PL neural pop-
ulation connected to VTA (see figure 3.3).

Cortical processes also influence how CeA contributes tolaéigg the acti-
vation of VTA dopaminergic neurons (Everitt et al., 2000929Jalabert et al.,
2009; Wallace et al., 1992). Specific connections betweerPth and the IL,
and their different targets within CeA, support oppositedoiation of CeA out-
put neurons by vmPFC: in particular, PL activation excitesAMutput neu-
rons, whereas IL activation inhibits them through the atton of GABAergic-
neuron intercalated nuclei (ITC) of Amg (Peters et al., 2008al-Gonzalez
et al., 2006). Finally, PL and IL show significant differesae their efferent
connections towards Hyp, PAG, and DR: in the model thesesdnase been
considered together both for lack of data concerning thaivigy (in this spe-
cific kind of long lasting inescapable stress experimenis)a@so because they
tend to react with coherent timing (Keay and Bandler, 20@l50 resulting in
similar effects on VTA dopaminergic release (Geisler etZ107). PL has a pre-
dominantly inhibitory effect on this combined area Hyp/FB® (Radley et al.,
2009) diminishing its capacity to react to stressors ancetbee the likelihood
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of affecting DA release. The model assumes that Hyp/PAG/fidRiethe system
during the second phase, when the inhibitory effect of the®dses: in partic-
ular, according to the model Hyp/PAG/DR target the mesaxadrVVTA system

and are responsible for the large increase in DA levels in M&Euring the

second phase of the experiments (passive coping).

3.2.3 The dynamics of stress responses

The functioning of the model, in particular during the twaphs of the target ex-
periments, is illustrated in figure 3.3. In the initial phasée experiment (figure
3.3a), the stressor leads to a strong activation of the Plilaagutatively cor-
responds to the implementation of an active coping/prolgeiving behavioural
strategy. PL activation fosters high tonic cortical NE leviarough excitation
of CeA inputs to LC, resulting in a general enhancement alisaiband the pro-
cesses supporting problem-solving and goal-directedvieia( OFC/ACC con-
tribute to activate LC as they evaluate the situation assfug. The activation
of the PL also constrains the levels of tonic cortical DA thatuld be caused
by Hyp/PAG/DR responses to stress via their influence on mcWia CeA, the
self-feeding circuit involving PL-Amg-LC is able to offs#te endogenous ac-
tivity of GABAergic neurons within the mIVTA and their acation by vmPFC.
Eventually, this circuit results in the removal of the inkidn of a population of
mesoaccumbens DA neurons that leads to a high efflux of DANiatcc, which
in turn is thought to energise the active coping responsed¢ss

The persistent input from the stressor, due to the failuractif’e coping at-
tempts (uncontrollability), in the model triggers a leaignprocess which strength-
ens the inhibitory connections between the PL inter-nepapulation, activated
by the IL, and PL output neurons (see figure 3.3). This proseassumed to
correspond to the progressive inhibition, by IL, of all aetbehaviours that fail
to produce the desired outcome, i.e. the removal of stressa fesult of this
learning mechanism, the activity of PL output neurons sjotdcreases, trig-
gering a cascade of processes that start the transitiorsgivpacoping (second
phase).
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In particular, the progressive inhibition of PL by IL (figuBe3b) reduces PL
excitation of CeA and hence causes a return of vmPFC NE tsipess lev-
els. Moreover, it removes PL inhibition of Hyp/PAG/DR anc$e areas con-
sequently start to excite mcVTA, thus causing a significactgase in tonic
vmPFC DA. The enhanced activity of IL resulting from incred<DA levels
speeds up the learning process within the vmPFC; moredwecreases the ac-
tivity of the ITC, thereby further suppressing the activatyCeA. Furthermore,
inputs from IL excite GABAergic interneuron populationstvn the mIVTA,
which are no longer inhibited by the CeA. For this reason raesombens DA
neurons are strongly inhibited, which causes Nacc DA lewaisop below base-
line (a condition which is known to correlate with a passiepiag strategy).

3.2.4 The computational mechanisms used to implement the rdel

The need to build a system-level model, and at the same tirkegp the expla-
nation of the target phenomena at a reasonably simple lledelys to simplify
and abstract as many details as possible when not centrld@xplanation of
the phenomena of interest.

The model was constrained at three main levels: its maaioitacture, the
functioning of its components and its overall functionifigne macro-architecture
of the model was fully constrained using relevant data fremro-anatomy (see
table 3.1). The functioning of the model components and ffexts produced
on them by the neuromodulators was constrained on the bibislogically-
plausible dynamical equations; whereas the representafidthe inescapable
stressor was simplified with a single input signal enterimg model at the be-
ginning of the simulated experiment (i.e. after 20 minutébowut any input) and
remaining stable for the rest of the time. With respect tovsrall functioning,
the model was thus constrained by requiring it to reprodioealyynamics of DA
and NE in vmPFC, and the dynamic of DA in the Nacc, in the thrnferént
conditions reported in Pascucci et al. (2007).

Due to the slow dynamics of the target data and the importahiceural pop-
ulation dynamics, standard leaky neural units (Dayan anblo&b2001) were
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used as building blocks, so that the dynamics of each unti@htodel repre-
sent the activity of a whole population of real neurons (arggasurable with a
mean field potential recording, Bojak et al. 2003, rathentwéh a single cell
recording):

7j iy = — i+ b+ > wji - al (3.1)
a; :[tanh[uj]]+

wherer; is the time constant of the unitu; anda; are respectively the action

potential and the activation of unitb; is the baseline activation of the unit,;
Is the synaptic strength of the connection between iuauitd unitj (this can be
either excitatory or inhibitory)y is the derivative ofiin time, [z]™ is a function
returning its argument if this is positive and zero if it iggaéve, and tanh[x] is
the hyperbolic tangent function.

An important feature of the model is the simulation of thexsbcumulation
and reuptake of the neuromodulators in the extrasynapéicespf target areas,
and the multiplicative/additive effects they have on sucdaa. The accumu-
lation and reuptake mechanisms of neuromodulators ardaeduthrough the
following equation (one for each different target area):

Tnk * lnk = — (thnk . tcmh[lnk]) + ((1 — dnk) “Wpk - an) (32)

wherel,;. represents the level of the neuromodulatan the extrasynaptic
space of the target ardéar,; is a time constant regulating the speed of the dy-
namics of this neuromodulatar,,; is the strength of the neuromodulatory con-
nections linking the unit,,, which produces the neuromodulatgrto the target
areak; th,; is then neuromodulator reuptake capacity of the target &rdhis
implies that when the level of the neuromodulatgr drops below a threshold
representing the overall reuptake capacity of the systegnnfjection of the neu-
romodulator(w,, - a,) and its reuptaké—th,,;. - tanh[l,;]) compensate an,
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Figure 3.3: Neural architecture of the model showing its componentssaibdcomponents (rounded square areas),
their neural assemblies (circles), and their connectitimss)). The size of circles and links respectively encode th
level of activity of neural assemblies and the strength efdignals transmitted between them during the first phase
(a) and second phase (b) of the experiment in the sham comditi

reaches an equilibrium (the higher the injection rate, tgkdr this equilibrium);
conversely, when it exceeds this threshold the level of theamodulator starts
to increase progressively (see Fellous and Linster 1998lternative ways of
modelling these phenomena).

To perform the simulated depletions, it is important to ogjuce the slow
dynamics exhibited by the target neuromodulator obsemeadal experiments
(figure 3.1a-c). Therefore, we introduced a slow dynamifesihg the variable
d,. in formula 3.2 (is the neuromodulatokis area targeted by the neuromodu-
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lator). In simulated sham rais;. was set to zero, so it did not alter the dynamics
of the neuromodulator. Instead, in experiments simulategdepletions of ei-
ther DA or NE in vmPFC this variable was set to a value in thgegl®, 1] so
that the injection of the neuromodulator into the targeaavas suitably lowered.
In particular,d,,; was regulated progressively towards the desired Iléyge(set

to 1 at the moment of the depletion) according to the follap@guation:

Tdnt . dnt = — dnt + d;zt (33)

The model also simulates tlaelditiveandmultiplicative effects that the neu-
romodulators produce on the target neuron populationsdesffespectively based
on the passive channels K+, Na+, and Ca++, and the activaenelAMPAR
and NDMAR: Fellous and Linster 1998). In this respect, theaggn of formula
3.1 relative to the computation of the activation potentiabf the model units
was modified as follows to reproduce the NE and DA effects:

1+ > (e - 1]
T S o ] O 2wl @4

+ Z[Oéezk i) — Z[Oédzk i)

where the coefficientg,;. and «,;. respectively regulate theultiplicative
excitatoryandadditive excitatoryeffects of the neuromodulatbon target area
k, whereas the coefficienis;; and oy, respectively regulate theultiplica-
tive inhibitory and additive inhibitory effects of the neuromodulatdron the
same area. Note that both the multiplicative and additiveces of the neu-
romodulators leave the signals unaltered if the level ofrtberomodulators is
zero. Moreover, the multiplicative effects depend on tlze sif the local glu-
tammaergic/GABAergic signals, whereas the additive omesralependent of
them. It should also be noted that the same neuromodulatgrhaee either
excitatory or depressive effects on different target acegsending on the dis-
tribution of its specific receptors: for instance, in the mloNE is assumed

Tj U = UG +
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to have a multiplicative and additive excitatory effect twe vmPFC popula-
tion of neurons connected to the Amg.{zvmprrc > 0, aeneompre > 0,
taNevmprce = 0, agnvEempre = 0) and a multiplicative and additive depressive
effect on the vmPFC population of neurons connected to ViIA £vprc = 0,
aeNEvmPFC = 0, laNEvmPFc > 0, agnEvmprc < 0).

Finally, the Hebbian learning processes leading to thesam® in the strength
of internal connections of vmPFC are implemented usingahleviing learning
rule:

wilt] = wylt = 1] +n - [a; — thy]™ - [a; — thi]” (3.5)

wherewj; is the connection weight between unand unitj, » is a learning
rate, andh; andth; are the thresholds that the activations:phnda; of the two
units have to overcome in order to trigger the learning gece

The model has been implemented in MatlabTM and the equabbrike
model were integrated with the Euler method with a time stepOosecs. This
long time step afforded fast simulations and at the same tewselts that were
still accurate given the very slow dynamics of the targetyameena.

The parameters of the model were found using a non-lineaessmn method
where the data to fit were those collected by microdialys reported in fig-
ure 3.1a-c. The regression method used is based on a gelgeirthan that
searches the parameters to minimise the average quadratidoetween these
data and those reproduced by the model. Genetic algoritepresent power-
ful non-linear regression methods that can be used witha@mplex non-linear
models, such as the one used here, where it is difficult or Enpassible to an-
alytically derive the parameters of the model from the tadza (Gulsen et al.,
1995; Kapanoglu et al., 2007; Vander Noot and Abrahams, 1 ¥98important
decision regarding the target data is whether to consitidreapoints of the time
series as equally important or to require different degoé@scuracy for differ-
ent sub-sets of data. In our case, the error related to thvesdescribing the DA
release in NAcc was considered particularly important, sassigned a weight
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Figure 3.4. Simulations of the releases of the neuromodulators -@mi& (a), cortical DA (b) and mesolimbic
DA (c)- recorded in the three conditions. Note the stresstirgulus is presented to the system after 20 minutes of
time simulation, in order to reach a starting equilibriunimogiven the basal activity of the neuromodulators.
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of 10 to the error in them whereas all other data points wesegyasd a weight
of 1.

3.3 Results

3.3.1 Simulation of target data from microdialysis measurenents

Figures 3.4a-c presents the dynamics of the neuromodsiptoduced by the
model with the parameters found by the genetic algorithroyshin table A.2)
when it was used to simulate the sham, NE depleted, and DA&tsptonditions
of the target experiment.

The comparison between real (figure 3.1a-c) and simulatgdréi3.4a-c)
data shows a substantial match, indicating that the assomspnd hypotheses
implemented in the model are computationally sound andcsefii to reproduce
the target phenomena. First, the model reproduces the rataolmolamine dy-
namics in the sham condition: an initial high level of vmPFE fllowed by
a return to baseline; an initial moderate increase in vmPRGdllowed by an
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even higher increase; a consequent NAcc DA level that fessrabove baseline
and then drops below it. Moreover, the model reproduces the features of the
neuromodulator dynamics in the case of both NE or DA deplahormPFC: in
particular, the fact that cortical NE is necessary for thigaihhigh level of NAcc
DA whereas cortical DA is necessary for NAcc DA to fall beloaskline during
the second phase of the experiement.

Figures 3.5a-d show the activation of four units of the mddepresenting
neural populations) during the simulations of the threeddmns of the exper-
iment: PL output population directed to Amg/VTA; CeA outgapulation; IL
output population; and Hyp/PAG/DR output population. Téhastivations help
to understand how, in the model, the brain areas correspgnadithese compo-
nents act in concert to produce the catecholamine dynanessritbed above.
The sham condition shows that PL and Amg (figures 3.5¢c and 3espec-
tively) are mainly activated during the first phase of thd tessupport goal-
directed/problem solving processes underlying activangppEven IL (figure
3.5d) has a relatively high activation during this phaseesehprocesses cause,
and are supported by, a high level of vmPFC NE. The final ouécohall these
processes is the increase in NAcc DA. During the second ghaasgtivity fur-
ther increases, which results in the inhibition of PL and @@4 in the activation
of Hyp/PAG/DR (figure 3.5b). These processes cause, andupapoged by, a
high level of vmPFC DA. The final outcome of all these processéhe decrease
of DA NAcc below baseline.

The vmPFC NE depletion causes a loss of about 10% in the pspkmse
of PL in the first phase, and an anticipation of its decreasabotut 20 mins
(figure 3.5c¢). This lower activity propagates to CeA (figurga}, which is no
longer able to offset the inhibitory effects in the mIVTA sad by GABAergic
interneuron populations. This is the main reason why, imibdel, NE depletion
in vmPFC prevents NAcc DA from increasing during the firstghaAt the same
time, PL lower activation slows down the IL-PL Hebbian laaghprocesses
resulting in a slightly delayed increase in the activatioht. (figure 3.5d) and
of Hyp/PAG/DR (figure 3.5b), which in turn result in a slightlelayed decrease
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below baseline of DA levels in NAcc.

The vmPFC DA depletion causes a major lower activation ofltlteiring the
whole test (figure 3.5d). This slows down the IL-PL learnimggesses and the
consequent decrease in PL output activation (figure 3.9t .stronger and more
persistent activity of the PL supports a higher activatib@®@A (figure 3.5a) and
again delays (even more than in the NE depletion conditibe)activation of
Hyp/PAG/DR (figure 3.5b). The lower IL activity due to the depon of vmPFC
DA prevents IL from having its inhibitory effect on mIVTA, drhence prevents
NAcc DA from dropping below baseline.

3.3.2 Predictions

The main hypothesis implemented by the model is that theufticins of cat-
echolamines in vmPFC and their role in the modulation of Déele in NAcc
critically depend on the interactions between the PL andlithéur model,
which implements this hypothesis and which has been valithy reproduc-
ing the fluctuations of catecholamines observed in normélesioned animals,
can be used to derive a number of empirical predictions. thqudar, we sim-
ulated lesions to four different connections by settingsthoonnections to zero
(while leaving all other parameters of the model unchangedas in table A.2):
PL-Amg, PL-VTA, IL-Amg, and IL-VTA. The resulting dynamiasf the NAcc
DA, which represent the predictions of the model, are regobirt figures 3.6a-d,
where they are compared with the dynamics of NAcc DA in thersbandition.
The simulation of the lesion of PL-VTA connections revedls importance
of the globally inhibitory effect that PL exerts on NAcc DAvlds: when these
connections are removed, these levels are higher durirfgthetfirst and the
second phase, although the above/below -baseline featittes NAcc DA does
not qualitatively change with respect to sham rats (figuéa)3. The lesion of
PL-Amg connections produces more interesting effectd; firAkcc DA remains
at baseline during the first phase, and then decreases bakslire but after
a delay with respect to the sham rats (figure 3.6b). Thesendigsasimilar to
those obtained with the vmPFC NE depletion (figure 3.6ckakthe significant
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Figure 3.5. Activities recorded in four different units of the model sifating the mean field neural activity of the
corresponding neural populations of the rat brain. Notétthabasal release of DA and NE affects the activation
status of the cortices -graphs (c) and (d)- even before thesstg stimulus is presented (time 0), determining the
starting equilibrium which is then affected by the stressor

influence that PL exerts on mIVTA via Amg, with the support d& Kontal lev-
els. The lesion of IL-VTA connections produces a significactease in NAcc
DA during the first phase and a baseline level in the seconidopéine simula-

tion, versus the below-baseline level of sham rats (figuse)3These dynamics,
similar to those recorded after the vmPFC DA depletion (Bg6c), reveal the
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Figure 3.6. Four predictions suggested by the model. The mesolimbicdddase was recorded after lesioning the
model (blank square lines) and is compared with the knowa daaracterising sham rats (filled circle lines). The

0 40 80 120 1860 200 240

(d)

lesions affect efferent projections of either PL or IL andithargeted area in the VTA and the Amg.

key role that IL plays in controlling NAcc DA, with the suppaf frontal DA

levels. The lesion of IL-Amg connections causes NAcc DA teehthe greatest
level of NAcc DA in the first phase, plus an above-baselinell@ven in the

second phase (figure 3.6d). This clarifies the key role thathibition of Amg
plays in causing low levels of NAcc DA during passive coping.

These predictions may be falsified using combined conamdhtesions: for
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practical reasons, this technique aims at isolating twoaleagions via asym-

metrical lesions of the areas, rather than directly invajwihe synapses bridging
the areas themselves. Further, the final result is widelsidened as similar

and hence it can be used to test the present simulationsh Wwhie been carried
out setting to O the connections involved (e.g. see Coutuetal. 2009 for a

PL-Amg lesion).



Chapter 4

Conclusions

This dissertation thesis presents a bio-constrainedmylaeel model that repro-
duces and explains data obtained from experiments inadsiggcatecholamine
releases in rats forced to cope with long-lasting, unavmalaescapable stress,
focussing on (1) how DA and NE levels in vmPFC control toniels of NAcc
DA (Pascucci et al., 2007) and (2) the cause for the diffelktc DA release
when the animal is repeatedly exposed to restraint (CaldbParglisi-Allegra,
1996). The experiment showed that the initial responsedastiessor is char-
acterized by an imbalance favouring NE over DA in vmPFC assed with
high tonic levels of DA in NAcc. This phase is followed by afshuf the im-
balance in favour of DA accompanied by a reduction of tonicchl®A below
pre-stress levels. The experiment also supports the egest# a causal relation-
ship between the cortical and the subcortical catechokamia concentrations
as selective depletion of cortical NE or DA respectivelynhates the first-phase
increase and the second phase decrease of NAcc DA.

The model proposes an explanation of the way in which theuains in
tonic levels of brain catecholamines support stress agpgirgorimary and sec-
ondary) and hence, putatively, the motivational statetabla for supporting
effective coping of novel stressors. In particular, theiahiprimary appraisal,
marked by high NE levels in vmPFC, is directed toward recsiggi and eval-
uating the threat posed by the stressor (with the involvémé®FC/ACC),
addressing it on the basis of reactive and goal-directadeacbping strategies
(with the involvement of vmPFC, in particular PL, and Amghidis in agree-
ment with the general involvement of vmPFC with the contifdharmonal and
behavioural stress responses based on the catecholamiregyglations occur-
ring inside it (Cabib et al., 2002; Maier and Watkins, 2016p®aiencki et al.,
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2009). In this respect, the high levels of cortical tonic NEyndrive not only the
general arousal of the system required to face the urgertbgaituation (Aston-
Jones et al., 1999; Berridge and Waterhouse, 2003), butlasshift to an ex-
ploratory/problem solving mode of operation (Aston Joned &ohen, 2005)
eventually triggered by the failure of the initial attemptsterminate/escape
the stressing condition. At the same time, slightly aboasdline mesocorti-
cal dopamine levels in PFC might play an important adaptile Iy preventing
excessive behavioural and physiological stress reacii@tllivan, 2004). The
high levels of NAcc DA resulting from the high activation off(ViTA, in turn
caused by the activation of PL and Amg involved in the elatianaof the ac-
tive coping strategy, possibly have the function of en@ngishe preparation and
iImplementation of actions as suggested by experimentsisgdhat high levels
of NAcc DA can support strenous and risky goal-directed oasps (Salamone
et al. 2007 see also Niv et al. 2007, for a model).

A key hypothesis of the model is that the persistence of thessbr might
lead the IL to detect the failure of the active coping attesygoid to progressively
(learn to) inhibit them through the inhibition of PL and Amghis hypothesis
Is consistent with the view that the extinction of no longeajgtive appetitive or
aversive behaviours involves learning processes thattteadtively inhibiting,
rather than forgetting, such behaviours (Quirk, 2002) ttlermore, it is consis-
tent with data ascribing to IL a key role in these inhibitorpgesses and with the
close neural interplay existing between IL and PL (labet al., 2004; Radley
et al., 2006, 2008; Rhodes and Killcross, 2004; Van Aerdd.e2@08). These
processes are suggested to lead to a shift to passive cdpategses based on
a broad readjustment of the catecholamine levels and bcawvataon distribu-
tion. First, NE in vmPFC returns to pre-stress levels thussiidy diminishing
arousal, attention to external events, goal-directed\nebes, and exploration of
new solutions. Second, high levels of DA in PFC might enhdhegrocessing
of internal information vs. external stimuli and strengtregnitive persever-
ance and internal focus (Cohen et al., 2002). Lastly, NAccl® levels pos-
sibly promote a decreased overt activity, in agreement thighexperiments in
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which inhibition of NAcc DA release can block this activityhen the stressor is
appraised as uncontrollable/unavoidable (Baldo and iKe2@07; Phillips et al.,
2007; Ventura et al., 2002).

Genetic Algorithms have been used as regression tool tohsepdarame-
ters of this complex bio-constrained neural model. The @h&tpter describes
why the use of the genetic algorithm for searching modelmpatars can help
the researcher not only in finding the set of parameters {hianse the corre-
spondence between the model behavior and the target da@sbun defining
the model architecture itself, hence defining the core hygsxs concerning the
function of the model.

The model included at least three different neural mechamiorking at
different time scales: electrical (activity of single w)itchemical (dynamics
of the neuromodulators), and pertaining to long term paéon (learning in
the vmPFC); the presence of these different types of nentedactions did not
prevent the GA from finding the optimal parameters that wéte o replicate
the target data, it only resulted in an increase in the the tequired for running
the evolutionary search.

It is important to stress that the overall methodology ig/\Exible, in that it
can be used for models that target any kind of empirical datdéhe described
case study the target data were time series of data repiregsdré concentrations
of different neuromodulators in different brain areas aasoeed by microdial-
yses in different conditions, but the same procedure (ssgwa towards target
data using weighted fitness) can be employed using any kigdarititative tar-
get data, be they chemical, neural, or behavioral.

One important weakness of the proposed method is that ther€fsres
choosing between several different sub-methods (mutatimssover, selection
etc.), each of which has its own meta-parameters to be spuigtoon, gener-
ations, ranges etc.). Since no clear and accepted rule islaeafor making
these decisions, the choice on the details of the genetcitdg is rather arbi-
trary. This might seems to result in a switch of the problerfirafing the correct
parameters from the ones of the model to the ones of the GAalttipe the sit-
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uation is much better than it appears. Indeed, even thoumigfit be difficult to

find the mostefficientcombination of methods and meta-parameters of the GA
In each specific case, it is quite easy to find a combinationglsatisfyinglyef-
fective indeed the main problem in this cases is that good solutekeslonger

to be found. In fact, as the case study shown here has deratatsteven using
several default options of already-available softwake the Matlalic) GA tool
used here, can be enough for giving useful results.

Interestingly, the GAs have been used to set the paramdtére mmodel so
that it could replicate the specific set of data describedascBcci et al. (2007),
but the model also successfully replicates a different setieg from repeated
exposure to restraint (Cabib and Puglisi-Allegra, 1996)isTime, the record-
ing only interested the DA release in the NAcc for 120 minubeg the model
managed to simulate all the three standard dynamics (NE and {2nPFC and
DA in NAcc) for the whole 4 hours routine. This result is grokea on the as-
sumption that each time the agent is subjected to the stresspontaneously
recovers at a certain pace: the daily repetition of the exypats results in accu-
mulating the learned inhibition within the vmPFC and therefin blocking the
initial response. Eventually the model predict the repatimay also cause an
iImmediate switch to the described second phase of toniase)echaracterised
by a depressive release of NAcc DA.

The model also produced four more predictions on the passitbects that
lesions of PL and IL efferents reaching VTA and Amg would @as the NAcc
DA dynamics during restraint tests. In particular, a lessbthe PL-Amg con-
nections would prevent NAcc DA from going above baselin@lgwn the first
phase of the experiment; instead, a lesion of the IL-VTA emtions would pre-
vent NAcc DA from dropping below baseline levels during tee@nd phase of
the experiment. These predictions can be tested in expetsmagth real rats and
the results would either support or falsify the two core hipeses of the model
for which (a) the stress-induced changes in tonic levelsnoPFC NE and DA
that drive the NAcc DA accumulation preferentially involl?e and IL respec-
tively, and (b) the main features of the dynamics itself smately caused by
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the strengthening of the IL inhibition towards PL and Amg.

Another possible empirical investigation that could hefiive some unre-
solved aspects of the model concerns the involvement of PAG/DR in driving
the activation of mcVTA neurons during the passive copingggh The relations
between these and the other areas of the model are still iptcfear as there
Is little empirical evidence to narrow the targeted areahmVTA (i.e. there is
evidence concerning DR-VTA connections, see Geisler &04l7, but not DR-
MCVTA connections). In fact, it was the failure of the GA inding optimal
parameters for an early version of the model that led to tiveldpment of a
second model, highlighting the necessity of relying on siiscific connectivity
bridging DR and mcVTA.

The comparison between the two models described in the tiatheexempli-
fies the process of (weak) falsification and validation oftamstrained models
made possible by the use of the GAs. Despite the fact that theld@es not
search for the parameters through the whole parameter,9pacguided search
performed is still helpful in understanding the computadéibcapabilities and
limits characterising different models.

The fact that the first model lacks a specific signal reachiegMTA with
the correct timing depends on the architecture of the neystem rather than
on its parameters. Such conclusion might of course have teesmed also by
setting parameters through hand-tuning, but this woulde lraquired a much
longer amount of time and the conclusion that an appropset®f parameters
does not exist would have be much less certain. Indeed, ttiee ¢@nclusion can
be demonstrated only after an exhaustive search in the pteaspace which is
practically unfeasible with many parameters as the requoeputational time
grows exponentially with the number of parameters.

A possible way to shed more light on these issues, pursuing\avo process
of validation/falsification, is to measure the levels oftmal serotonin (5-HT)
during a restraint experiment: the increase of 5-HT durireggecond phase of
the experiment would be consistent with an active involvetnoé DR in the DA
regulations as hypothesised by the model. This outcomal@sb suggest the
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existence of possible interesting relations between theham@sms underlying
stress coping and those underlying the outcomes of the iexpets on learned
helplessness, closely linked to the 5-HT system (Amat e28D5; Maier and
Watkins, 2005, 2010).

The proposed model, which is the first computational intiegia@account of
the target phenomena, could be developed in various directn future work.
First, it might be useful to investigate in greater detad gpecific effects the
catecholamines have on the several parts and layers of tiR-@€mbringing
the model closer to the complexity of widespread projectiohthe real cat-
echolamine systems. This would allow the important inteoas existing be-
tween multiple neuromodulators targeting the same arehs &iudied, in par-
ticular the frontal cortex (Briand et al., 2007). Seconahight be interesting to
investigate the role played by the opioid system in strepsgoas opioids have
been shown to be involved in VTA regulation of vmPFC DA levéfvingos
et al., 2001). Finally, the hypotheses regarding the pugdtinctional adaptive
role of the various components, neuromodulators and psesesf the model
could be investigated in greater depth by implementing #tait$ of the neural
processes taking place in PL, IL, Amg, OFC-ACC, Hyp/PAG/BRBr example,
the effects of NE and DA on goal-directed behaviour could toelisd by im-
plementing neural decision making mechanisms in PL (Guet&y., 2001), the
progressive inhibition of IL on PL might be further specifieg implementing
a neural action-failure detection mechanism within IL (¢édader and Brown,
2010), and the role of NAcc DA in energizing behaviour migkt diudied in
greater depth by implementing a NAcc actually contributog@erform a simu-
lated behaviour. An "embodied” set-up, cf. Caligiore eR4l10; Niv et al. 2007,
could target experiments involving overt behaviour, e.tpraed swimming test
(Porsoltet al., 1977), possibly refining the model so asdalpce more accurate
predictions regarding the role played by NE, DA (and pogstbHT) in vmPFC
and DA in NAcc and their correlation with the expression oéand covert
reactions to stress.



Appendix A

Table A.1: All the acronyms used in this dissertation.

Neuromodulators

DA Dopamine
GABA Gamma-aminobutyric acid
Glu Glutamate
NE Noradrenaline/norepinephrine
5-HT serotonin
Brain Areas
Amg Amygdala
CeA Central nucleus of amygdala
ITC Intercalated amygdaloid nuclei
DR Dorsal raphe nucleus
Hyp Hypothalamus
LC Locus coeruleus
NAcc Nucleus accumbens
OFC Orbitofrontal cortex
PAG Periaqueductal gray
PFC Prefrontal cortex
vmPFC Ventromedial prefrontal cortex
IL Infralimbic cortex
PL Prelimbic Cortex
VTA Ventral tegmental area
mcVTA meso-cortical ventral tegmental area
mIVTA meso-limbic ventral tegmental area

Tables
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Table A.2: Values found using GAs: parameters not specified have béémEe'inp”, "int” and "out” respectively

stand for input, interneuron and output population of a akairea.

GLU (+) and GABA (-) connections

Efferent Afferent Value
CeA LC 0.3042
CeA mIVTA-intl -5

CeA mIVTA-int2 -4.9267
Hyp/PAG/DR mcVTA 0.6976
Hyp/PAG/DR-inp Hyp/PAG/DR-out 1.4694
Hyp/PAG/DR-int Hyp/PAG/DR-inp -4.8477
IL ITC 4.4910
IL mcVTA 0.3541
IL mIVTA-intl 3.9190
IL mIVTA-int2 3.2051
Input IL 0.4859
Input OFC/ACC 0.5

ITC CeA -3.4307
McVTA-int mcVTA-output -3.3512
mcVTA-output mcVTA-input 1.6193
mIVTA-intl mIVTA-output -1.2221
mIVTA-intl MIVTA-int2 -2.3243
mIVTA-int2 mIVTA-output -1.5046
PL CeA 3.8170
PL mcVTA 0.2

PL mIVTA-intl 2.6646
PL mIVTA-int2 0.2
Neuromodulators: additive effects

DA in PFC 0.3439
NE in PFC 0.3339
Neuromodulators: multiplicative effects

DA in PFC 1

NE in PFC 1
Neuromodulators: baselines

mcVTA-output baseline 1.9634
mIVTA-output baseline 1.7
mIVTA-intl baseline 2

Leaky decays

Neural units 30000
Neuromodulator accumulation 300000
Depletion decays

Depletion decay of DA 3633600
Depletion decay of NE 1196480
Other parameters

LC threshold 0.5
Learning rate in vmPFC 0.0064
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