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Abstract

According to appraisal theorists, coping strategies startafter the evaluation of
those internal and environmental conditions which are perceived, remembered or
imagined as negatively affecting an agent. This evaluationphase characterises
the appraisal (Lazarus, 1985), which eventually triggers the physiological and
motor responses that belong to the subject’s learned or selectively evolved reper-
toire as those that are most likely to help ending the stressing stimulus. Ex-
periments dealing with long lasting inescapable stress conditions (e.g. restraint
test, Porsolt test) perfectly illustrate the appraisal theory: as soon as the stress-
ing stimulus is perceived, the naive subject (typically a rat) tries to perform the
escape strategies of its repertoire. The active coping phase lasts several minutes
(time varies according to the experimental paradigm) and itis characterised by
high dopamine (DA) release in the Nucleus Accumbens (NAcc) and hyperactiv-
ity (when allowed). Nevertheless, if the stressing stimulus persists and any effort
to escape from it is worthless, the subject eventually changes its behavioural
strategy, thus starting the passive coping phase, which is characterised by ac-
cumbens DA release significantly below the basal level and immobility. We have
decided to address the problem of investigating the neural mechanics underlying
the appraisal of controllability using an anatomic and systemic approach (e.g.
see Armony et al. 1997). That is to say, we have developed a neural mass model,
using Matlab application, characterised by a) few network units simulating the
activity of neural populations via standard leaky functions (Dayan and Abbott,
2001); b) an architecture wholly constrained on the basis ofthe known brain
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anatomy.
The target data consist of microdialyses recorded by Pascucci et al. (2007)

during a restraint experience lasting 240’: this experiment has been selected
because of its slow dynamics and the solid amount of data concerning cate-
cholamine releases. Indeed, the recordings show the role ofguidance played
by the medial PreFrontal Cortex (mPFC) in establishing the amount of mesoac-
cumbens DA in three different conditions: sham and either DAor norepinephrine
(NE) selective depletion in the mPFC.

The model is grounded on three key hypotheses: (1) vmPFC NE allows pre-
limbic cortex (PL) to guide active coping strategies and support the cost of these
responses by enhancing NAcc DA levels; (2) vmPFC DA allows infralimbic cor-
tex (IL) to block active coping attempts when these are unsuccessful by decreas-
ing NAcc DA levels below baseline; (3) the learning process involving IL and
PL leads to the transition from active to passive coping strategies. In conclusion,
the model proved to be able to simulate and reproduce rather accurately all the
target data, hence providing a good systemic representation of the mechanisms
causing these dynamics in rats. Furthermore, the model provides several predic-
tions resulting from the simulation of specific lesions, paving the way for new
experiments that might either falsify or verify the model and its core hypotheses.



Chapter 1

Introduction

Emotions play a central role in the life of mammals, shaping the way these or-
ganisms perceive and understand the world, biasing their beliefs and affecting
their behaviours as a response to external and internal conditions.

Despite their pivotal function and broad presence across species, emotions are
an extremely elusive psychobiological phenomenon: subjective variances (con-
sidering timing, body/brain regulatory reactions, neuralactivity and behaviours)
and low experimental control on the internal conditions of the organism make
it difficult to establish univocal correlations leading to specific emotions starting
from a causal chain of stimuli or conditions. Furthermore, emotions are a perfect
example of emergent phenomena arising from the interactionamong systems and
therefore they are better represented as dynamic flows of activities taking place
in heterogenous interconnected systems rather than staticstates (i.e. in clas-
sic functionalist perspective: Putnam 1967) realised by homogenous ”emotional
centres” in the brain.

This heterogeneity is amplified by the vast amount of available tools deployed
to measure and record activity and functioning of the systems involved. In the
latest years, the field of neuroscience has seen a tremendousadvancement of tra-
ditional investigation techniques and the emergence of several technologies (e.g.,
structural and functional brain imaging techniques, transcranial magnetic stim-
ulation, anatomical tracing techniques, voltammetry and microdialysis, multi-
electrode array recording, genetic manipulation; Heuschkel et al., 2002; Lomber,
1999; Raichle and Mintun, 2006; Rothwell, 1997; Toga and Mazziotta, 1996):
these techniques are producing data characterised by different time scales, dif-
ferent levels of granularity – from molecular levels to neural population levels,
different involvement of time – synchronous data vs. time series, etc..
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All things considered, any analysis of this complex psychobiological phe-
nomenon has to deal with most, if not all, of the following: (A) variability,
concerning time and amounts of recorded measurements; (B) performed or at-
tempted behaviours; (C) broad regulation of both the body and the brain via hor-
mones and catecholamine and (D) several neural systems interacting with one
another, generating circular causal interactions.

The grain of analysis of bio-constrained models. Among the several possible
approaches, the next chapters of this dissertation endorsean ”anatomic perspec-
tive” of the appraisal theory (Marsella et al., 2010). According to appraisal the-
orists, emotions result univocally from a sequence of evaluations taking into ac-
count a flow of information provided by the perceived world (i.e. its significance
for the organism) and the general condition of the very organism performing the
appraisal (Scherer et al., 2001). Depending on the available internal and external
resources – and considering among the resources the agent’sknown repertoire of
actions – the evaluation evokes a single emotive response (Lazarus, 1985, 1991;
Lazarus and Folkman, 1984) characterised by the aforementioned features.

The appraisal theory shifts the attention from the elusive concept of emo-
tion to a vague concept of evaluation: nonetheless, the latter is sufficient for
the anatomic approach to pursue a concrete explanation of the processes re-
alising it, focussing on the neural mechanism underlying emotional responses
(Ledoux, 1996; Panksepp, 1998). This approach pushes forward the generation
of artificial neural circuits characterised by architectures whose design matches
as much as possible the structure of the biological neural system under anal-
ysis. These anatomically-constrained neural circuits (oranatomically-inspired,
depending on the reliability of the final structures) are thecore of the computa-
tional models which are asked to simulate and successfully replicate the brain
functioning characterising both fast, automatic emotional responses and slower,
differentiated ones (e.g. see Armony et al. 1997).

When it comes to generate models of emotions, the commitmentintroduced
by any approach –such the anatomic one here described– is notsufficientper se
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in determining a comprehensive procedure: any simplified representation –i.e.
model– of reality relies on a set of theories bridging the representation to the
real phenomenon it is representing. The predictions the model provides thanks
to the analysis of its functioning must refer once again to the real phenomenon
it is representing and they must be tested having in mind the exact ratio of the
simplification employed. A model does not provide hints about data it is not
representing and it cannot represent data at scales different from the one used
to perform the starting simplification: both uses of the model eventually lead to
meaningless results. Thus, the process of simplification ispivotal: the chosen
grain of analysis must be kept constant when considering (A)the target data
the model aims to replicate, (B) the functions ascribed to the systems that are
represented in the model and finally (C) the predictions thatwill be tested.

The otherwise abstract problem of the grain of analysis becomes immediately
clear when considering the wide range of possibilities, targets, processes and
experiments than can be addressed in the field of neuroscience and emotions in
particular (the issue is widely discussed in the field of philosophy of science:
concerning psychological predicates and emotions, see Bechtel and Mundale
1999). Indeed, the anatomical approach may be used to createa wide variety of
models in the continuum between a fine and a coarse grain: the resulting models
will be focussing on representing accurately phenomena involving molecular re-
actions, dynamics of the activity of the receptors, features of single ion channels,
spiking activity of each neuron in the network, micro architecture of each neural
area involved, average activity of populations and macro structure allowing these
areas to interact with one another, broad effects of the catecholamines on entire
neural regions, abstract functions to ascribe to macro neural systems using a be-
havioural or evolutionary perspective and finally, the behaviour itself (including
learning and higher cognition).

Incidentally, the vast amount of data that can be potentially addressed to using
computational models pushes forward the use of the concept of bio-constrained
(Mirolli et al., 2010) rather than the narrowed concept of anatomically-constrained
models. Indeed, bio-constrained models built bycomputational and systems neu-
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roscience(Churchland et al., 1993; Churchland and Sejnowski, 1994; Dayan and
Abbott, 2001; Sejnowski, 1986), are constrained by a wider set of differentiated
evidence coming from anatomy, as well as from physiology, neuropathology or
behavioural analysis.

The validation problem and the choice of the ”mean field” grain. The choice
of the grain of analysis always comes at a price: a finer grain virtually allows
better explanations and more accurate predictions, but it actually leads the prob-
lem of setting the parameters and -as a consequence- it leadsto weakening the
chances to start a fruitful process of validation/falsification of the theories the
model relies on.

The reasoning leading to this conclusion is not straightforward and requires a
brief explanation. First of all, the finer the grain of analysis, the more it requires
the model to incorporate data and constraints: each of thesesets of data and
constraints is characterised by its own spatial and temporal scale, requiring a
number of assumptions, ad-hoc hypothesis and -what is more-increasing the
number of variables and parameters to be tuned to allow the models to replicate
and explain their target phenomena.

In literature, the problem of finding the appropriate set of parameters has been
solved using powerful regression techniques such as the Genetic Algorithms
(GAs; Chou and Voit, 2009; Moles et al., 2003; Ruppin, 2002),which have been
used to tune the model described in this dissertation. GAs are widely known and
used in tuning parameters with non-linear regressions (Kapanoglu et al., 2007;
Vander Noot and Abrahams, 1998; Yao and Sethares, 1994; Zhengjun et al.,
1995) and are generally considered as very effective because of their ”blind”
search within the parameter space (via randomly generated solutions and selec-
tions a posteriori). In bio-constrained models, the recurrent connectivity char-
acterising the neural architectures and the non-linear interactions between the
system components result in a wide and complex multidimensional parameter
space which the GAs explore looking for a set of parameters that might allow
the model to fit any provided set of target data.
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The GAs (as any other regression tool) may then fall into two different kinds
of problems: first, the simulation of all the desired interactions may become
computationally prohibitive when coupled with the highly complex neural archi-
tecture of a bio-constrained model. For instance, a neural network characterised
by either a high number of units or an extremely detailed and complex simulation
of the chemical interactions may easily result in a parameter space so vast that
there is simply not enough time or computing power to exploreeven a small part
of it. As a consequence no regression is possible and the hypotheses the model
is grounded on cannot be validated or falsified.

A second, more subtle, problem relies on the use of a vast number of param-
eters: the regression tool may succeed in finding a satisfying set of values for
the parameters, but this result might be once again useless in the process of ei-
ther validation or falsification of the model. This is the case of underdetermined
models, a problem which is firmly bound with the concept of constraints and
available degrees of freedom: if the introduced constraints are insufficient to re-
strict the degree of freedom arising from the free parameters (i.e. if there are
not enough data to keep each of the modeled functions, interactions or mecha-
nisms), the solution to the problem of setting the parameters will be plausibly
found, but it will not provide any evidence in support of the core hypotheses of
the model and hence it will not provide any interesting explanation of the tar-
get phenomenon. In short, an underconstrained condition entails the parameters
allow replicating so many different (and often conflicting)data, that the whole
concept of the model becomes irrelevant.

To avoid falling in either problem, this dissertation thesis focusses on a model
characterised by mean-field neural networks (Bojak et al., 2003), having as a
core element of the neural system a standard leaky neural unit (Dayan and Ab-
bott, 2001). The dynamics of each of these computational units represent the
activity of a whole population of real neurons (e.g., measurable with a mean
field potential recording) allowing a considerable simplification of the microar-
chitecture and dynamics pertaining the single cells and focussing on the systemic
interactions among neural populations and their resultingfunctioning.
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Mean field models come in many varieties and are becoming increasingly
popular due to their versatility in capturing different features of the average ac-
tivity of neural masses: a compromise between the mentionedfine grain and
coarse grain analysis perfectly matching data coming from different experiments
such as the limited spatial resolution of noninvasive neuroimaging techniques
(Friston et al., 2003; Marreiros et al., 2010) or the invasive microdialysis used to
record slow tonic catecholaminergic releases in long time scale, such as the ones
addressed by the model here presented.

Structure of the dissertation thesis. The whole dissertation thesis is focussed
on a bio-constrained model simulating the releases of catecholamines in rats sub-
jected to long lasting inescapable stressful conditions: the restraint test (Cabib
and Puglisi-Allegra, 1996; Pascucci et al., 2007). The model simulates the pro-
cesses taking place in rats due to the huge amount of data thatneuroanatomy,
neurophysiology and psychophysiology have accumulated about the rat nervous
system: these data represent a perfect repository of information to use whilst
building the structure of the model, also providing a sufficient amount of con-
straints to offset the number of free parameters.

Chapter 2 deals with the theoretical problem of the appraisal of controllabil-
ity, explaining in details how the neural model has been built and describing the
core features of the method used to set the parameters, i.e. the GAs and the
way this tool allows tuning both the free parameters and the very structure of the
model. The focus of this chapter is on the way the appraisal ofcontrollability
changes depending on the number of exposures to the same stressful experience:
the model successfully replicates all target data, pushingforward a series of pre-
dictions.

Chapter 3, which is a slightly modified version of an article recently submitted
to the Journal of Neuroscience, deals with the brain mechanisms realising the
specific dynamics of the neuromodulators during the restraint test. The chapter
describes in details the functioning of the model, its biological constraints and
the computational features used to simulate both mean field activities and the
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effects and dynamics of the neuromodulators on the target areas.
The model successfully replicates the whole set of target data providing a

description of the plausible neural activity during the experiment and pushing
forward four predictions concerning lesions that are not only helpful in under-
standing the processes underlying stress coping, but in strengthening the process
of falsifcation/validation of the model.

The appendix at the end of the dissertation thesis provides atable of the
acronyms used throughout the dissertation and the table of the parameters evolved
using the GAs and allowing the model to replicate all the datahere presented.



Chapter 2

The appraisal of controllability

Abstract

According to appraisal theorists, emotional and behavioural responses any organism evokes
in the attempt to cope with perceived stimuli follow the evaluation (appraisal) of both inter-
nal and external conditions characterising the subject.

We rely on a system-level bio-constrained neural model to provide an explanation of the
neural mechanisms realising the evaluation of controllability: in particular, this chapter
focusses on catecholaminergic data coming from rats subjected to restraint test (Cabib and
Puglisi-Allegra, 1996; Pascucci et al., 2007). The model provides a description of the neural
mechanism underlying the process of appraisal, showing thecause of the different coping
strategies deployed by naive and repeatedly exposed subjects in presence of a long-lasting,
inescapable stressor.

The high number of neural systems involved in the process andthe required simulation of the
effects of the neuromodulators result in increasing the number of variables and parameters
to be set in the model. Genetic algorithms have been chosen asa tool to overcome this
problem: this powerful non-linear regression tool has successfully managed in setting the
free parameters of the model and in guiding the development of its neural architecture. This
tuning process allowed the model to replicate all target data, providing several predictions.

2.1 Introduction

2.1.1 Appraisal

The emotional and behavioural response to stress conditions plays a fundamen-
tal role in the adaptation of organisms. Following the appraisal theory (Scherer
et al., 2001), these responses are realised as a consequenceof an evaluation pro-
cess taking into account both internal and external conditions and biasing higher
level cognitive processes. First, the evaluation establishes the nature of the event
and its significance for the organism and secondly, it assesses the chances for the
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organism to cope with the event, depending on the available resources. There-
fore, in presence of a stressor and depending on the appraisal, the stressed or-
ganism can trigger several different responses resulting in the attempt to remove,
escape or tolerate the stressor itself (Lazarus, 1985, 1991; Lazarus and Folkman,
1984).

The appraisal theory relies on two core assumptions (Scherer et al., 2001):
first, there is a bijective relation between sequences of appraisals and the emo-
tional and behavioural responses it elicits: appraisals precede emotions so that
each single sequence always evokes the same physiological and behavioural re-
sponse (giving an account of individual and temporal differences in emotional
response to the same stimuli). Secondly, the appraisal system normally evokes
those responses which are more likely to be efficacious in coping with the pro-
vided stimuli: inadequate understanding of the event or of the available resources
(either internal or external) and a poor repertoire of actions lead to inappropriate
appraisals, causing irrational emotive reactions and behaviours. This condition
may be artificially induced interfering with the mechanics of the appraisal and it
may become pathological when the appraisal is constantly unable to carry out its
normal evaluation process.

The physiological changes taking place during the evaluation process and its
produced sequence of appraisals have been widely investigated. In particular,
the use of animal models (Hull, 1943; Tolman, 1932) and the ability of control-
ling neurophysiological variables (via neuromodulator agonists and antagonists,
lesions, inactivation and microdialysis techniques) havebeen granting a solid
and constant inflow of data which mainly concerns conditioning (either pavlo-
vian/instrumental and positive/aversive), goal-oriented behaviours and, what is
more important for the purpose of this paper, stress coping (Amat et al., 2005,
2008, 2006; Cabib and Puglisi-Allegra, 1994, 1996; Maier, 1984; Maier and
Watkins, 2005; Pascucci et al., 2007). Nonetheless, this huge amount of data
concerning neural and cathecolaminergic activities is notper sesufficient to give
an account of the nature and functioning of the mechanism causing these regu-
lations and the resulting behavioural responses, so that our understanding of the
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brain mechanisms underlying the phenomena targeted by the data is not increas-
ing at the same pace.

The difficulties in investigating appraisal are due to the several neural compo-
nents (areas and modulators) it requires at different psychobiological level and
the very nature of these interactions, which rely on a type ofcausality charac-
terised by a high degree of circularity (Lewis, 2005). This paper proposes to
address this complexity using a computational model, focussing in particular
on the appraisal of stress controllability, targeting dataconcerning the specific
evaluation processes determining how to cope with novel andpreviously experi-
enced uncontrollable stressors. This specific type of evaluation has been chosen
because of the wealthy amount of data (Amat et al., 2008, 2006; Bland et al.,
2003; Cabib and Puglisi-Allegra, 1994, 1996; Maier and Watkins, 2005; Pas-
cucci et al., 2007) and because the appraisal of controllability interestingly leads
to completely different behaviours, even in presence of thesame persistent stim-
ulus: the complex relation established between constant external conditions and
a pattern of differentiated coping strategies allows to simplify part of the evalu-
ation process, blocking one of the fundamental variables ofthe evaluation (i.e.
the external conditions) and focussing on the remaining one(i.e. the evaluation
of internal condition).

2.1.2 Coping Strategies

Stress-coping strategies can be grouped into two broad categories (Lazarus, 1985,
1991; Lazarus and Folkman, 1984; Rosenstiel and Keefe, 1983): (a) ‘problem-
focused strategies’ or ‘active (proactive) coping’, referring to responses directed
to the external environment and aimed at removing or avoiding the source of
stress; (b) ‘emotionally-focused strategies’ or ‘passivecoping’, referring to ‘in-
ternal responses’ directed to reduce or sustain the impact of the stressor, both
physically and psychologically, for example releasing endorphins to mitigate
pain (Frew and Drummond, 2008; Tejedor-Real et al., 1995).

In this respect, dopamine (DA) presence in nucleus accumbens (NAcc), the
terminal region of the mesoaccumbens dopamine system, plays a central role.



2.1. Introduction 11

A wealth of ex vivo and in vivo studies demonstrates an elevation of mesoac-
cumbens DA release in response to unconditioned aversive stimuli such as foot
shock, tail shock, tail pinch, and restraint (Horvitz, 2000). Mesoaccumbens DA
release is also observed in species-typical stressful experiences such as in male
rats or mice under attack of conspecifics (Miczek et al., 2008). Moreover, DA
antagonists at doses that do not interfere with motor responses block the ex-
pression of species-typical defensive strategies towardsaggressors whilst DA
agonists stimulate the expression of these responses towards non aggressive con-
specifics (Belzung et al., 1991; Filibeck et al., 1988; Puglisi-Allegra and Cabib,
1988). The use of high doses of DA antagonists in the NAcc is a critical cause
of motor deficits: it impairs a number of different types of behaviour in differ-
ent contexts, including aversive tasks involving for instance place avoidance and
taste aversion (Huang and Hsiao, 2002; Salamone, 1994; Salamone and Correa,
2002).

An increased DA release in NAcc in stressing conditions could have the func-
tions of energizing behavioral attempts to cope with the stressor, ascribing high
incentive salience to goals of actions and favouring quick and durable learning
of effective coping attempts (Berridge, 2007; Di Chiara andBassareo, 2007; Niv
et al., 2007; Salamone et al., 2007; Schultz, 2007). This idea is also supported
by experiments showing that manipulating the amount of DA inthe NAcc re-
sults in altering the disposition of the subjects to make andsustain any effort,
independently of the knowledge about the possible results (Berridge and Robin-
son, 1998; Salamone and Correa, 2002). For example, a low amount of NAcc
DA results in a decreased disposition to select actions which might lead to high
rewards but require high efforts (Salamone et al., 2003).

Dopamine in NAcc also plays an important role in passive coping strategies.
In fact, in (novel) unavoidable/uncontrollable prolongedstressing conditions af-
ter the aforementioned initial increase, NAcc DA falls below the baseline and
this fall generally correlates with the rats inactivity: restrained rodents show this
initial enhancement of DA release, followed by substantialdecrement if the ani-
mals are not released from the stressful condition within 20to 40 minutes (Cabib
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et al., 2002; Imperato et al., 1993; Pascucci et al., 2007; Puglisi-Allegra et al.,
1991). In the Porsolt’s Forced Swimming Test (FST), in whichanimals experi-
ence an energy demanding condition (they are placed in a small water tank with
no way out), the DA inhibition takes place within few minutesbringing forth
inactivity (Rossetti et al., 1993).

The initial high release of NAcc DA during prolonged stress has been recorded
in naive rats both in inescapable aversive conditions and incontrollable ones.
Nonetheless, if the rat is exposed to several trials of uncontrollable stress, the
initial high response is inhibited, even if it is still possible to record the second
below the baseline DA release in NAcc (Bland et al., 2003; Cabib and Puglisi-
Allegra, 1994). Inhibition of mesoaccumbens DA release is also related to the
reduction of the attempts to escape or remove the source of stress: such a be-
haviour, known as ‘behavioral despair’, is typically observed in FST (Porsolt
et al., 1977). When first immersed in the water tank, naive animals show vigor-
ous attempts to escape from the tank by swimming and struggling to climb its
walls. These responses are soon replaced by episodes of immobility of increas-
ing length. Independent studies have demonstrated that chronic antidepressant
treatments capable of reducing FST-induced despair also prevent FST-induced
accumbal DA decrease (Rossetti et al., 1993).

Summing up, a model of the appraisal of stress controllability has to deal with
the brain mechanisms underlying the regulation of NAcc DA, giving an account
of the different evaluation of uncontrollability showed bynaive and repeatedly
stress exposed rats. Increasing evidence indicates that the medial prefrontal cor-
tex (mPFC) plays the key role role of guidance in this regulation (Amat et al.,
2005; Pascucci et al., 2007; Spencer et al., 2004): this hypothesis is consistent
with data coming from both anatomical analysis (Jankowski and Sesack, 2004)
and records of neural activity and behaviours expressed in the presence of selec-
tive neural inhibition (Peyron et al., 1998).

The goal of this paper is to use a neural-network computational model (Gur-
ney, 2007) providing detailed hypotheses on the brain mechanisms underlying
the appraisal of controllability in the case of long lastinginescapable stress con-
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ditions. The soundness of the model has been tested reproducing in detail the
dynamics of the neuromodulators as recorded in rats engagedin novel and re-
peated restraint test Cabib and Puglisi-Allegra (1996); Pascucci et al. (2007).

2.2 Parameter Setting

The key feature of bio-constrained models is that they rely on neural architec-
tures and functioning mechanisms that are constrained by empirical evidence on
the anatomy, physiology, and neuropathology of the biological neural systems
that are being modeled. These constraints can range from thefeatures of single
ion channels to the dynamics of neurotransmitters and neuromodulators, from
the features of single neurons and the micro-architecture of local neural circuits
to the macro-architecture of the whole brain. As a matter of fact, the increasing
amount of addressed data and constraints incorporated intothe models leads to a
parallel increase in the number of variables and parametersof the models. This
in turn leads to the increasingly difficult problem of findingthe appropriate set
of parameters that may allow the models to replicate and explain the target data:
the recurrent connectivity, the use of heterogeneous time-scales (e.g., for func-
tioning and for learning), and the highly non-linear dynamics of the interactions
between the sub-parts of a model, make the relation between acertain parameter
set and the functioning of the system with respect to the target data very indirect
and difficult to understand and manage.

The difficulties to set the parameters imply that the whole validation process
of the model becomes weak, uncertain and time consuming. Therisk to generate
ill-grounded falsifications is strongly increased becausevaluable hypotheses and
model variants may be discarded because the researcher’s failure in finding a
suitable set of parameters to reproduce the target data can be mistakenly confused
with the model’s inability to reproduce these data. An efficacious solution to
this problem comes from the use of Genetic Algorithms (GAs; Chou and Voit,
2009; Moles et al., 2003; Ruppin, 2002). In this section the technique relying
on the use of GAs is described in detail, showing how they allow searching for
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large parameters sets in bio-constrained neural models. The technique is first
illustrated in general and then applied to the model addressing the problem of
the appraisal of controllability.

2.2.1 Genetic Algorithms

GAs have been initially proposed as a model of Darwinian evolution, where in-
creasingly complex organisms evolve due to the two principles of selection of the
fittest and reproduction with variation (Goldberg, 1989; Holland, 1975; Mitchell,
1998). GAs are based on computational abstractions of the basic mechanisms
that underly natural evolution, like different kinds of selection regimes, inheri-
tance mechanisms, crossover techniques, and mutations processes.

In general, a GA works as follows. First, thegenomeof an individual (e.g.,
the parameters of a neural network that undergo the evolutionary process) is
encoded in a suitable data structure (e.g., a vector of numbers encoding the con-
nection weights of the network). Then an initialpopulationof these genome is
created (e.g., randomly), and each individualphenotype(e.g. the neural network
corresponding to a genome) is tested with the task at hand to evaluate itsfitness

(performance). The fitness is then used to select the fittest genomes, which are re-
produced with random variations so to generate a new population. If this process
is iterated several times (generations), individuals with high fitness eventually
emerge.

GAs have been used as a powerful technique for searching for solutions to
the optimization problems involving large parameter spaces (Gulsen et al., 1995;
Zheng and Lewis, 1994). GAs have been applied to several different research
fields, including computer science (Fogel, 1998), machine intelligence (Fogel,
2005), electronics (Zebulum et al., 2002), biology (Unger and Moult, 1993),
financial forecast (Chen, 2002), and economics (Allen and Karjalainen, 1999).

Furthremore, GAs have also been shown to be very effective when applied
to find the parameters of non-linear regressions models (Kapanoglu et al., 2007;
Vander Noot and Abrahams, 1998; Yao and Sethares, 1994; Zhengjun et al.,
1995). In this case, GAs are used to find the parameters of mathematical non-
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linear functions capturing the relations between the independent and dependent
variables of a target phenomenon. Their strength stems fromthe fact that the
GAs search within the parameter space in a “blind” fashion, that is to say, they
generate solutions randomly and then select thema posteriori, so they do not
need to rely upon gradient ascend or similar techniques thatbecome analytically
untractable when non-linearities overcome a certain levelof complexity. This is
the main reason making of the GAs a successful tool in the mentioned heteroge-
nous environments: robust algorithms with respect to the shape of the function
relating the variables of interest.

Two similar fields of application of GAs are very important for this research:
Artificial Life ( ALife) (Langton, 1997) and Evolutionary Robotics (ER) (Baldas-
sarre and Nolfi, 2009; Baldassarre et al., 2007; Nolfi and Floreano, 2000). In
these fields GAs are typically used to evolve the connection weights of neural-
networks that control the behavior of simulated organisms or robots interacting
with the environment in complex dynamical ways via noisy sensors and actuators
(e.g. Schembri et al., 2007a,b). In this case the fitness thatdrives the evolutionary
process is a quantitative measure of the behavioral performance of the artificial
systems with respect to the task decided by the experimenter.

The application of GAs to ALife models poses problems that are shared with
their application to bio-constrained models. First, ALifemodels often have a sig-
nificant number of parameters. Second, in both types of models GAs search for
parameters of systems characterised by complex, circular interactions: in ALife
models, much of the complexity of the relations between the searched parameters
and the target behaviour arises from the controller-body-environment circular in-
teractions (Baldassarre, 2008); in bio-constrained models, the complexity stems
from the highly structured architecture of the system, often incorporating recur-
rent connectivity and non-linear interactions between thesystem components.
The successful application of GAs to ALife models suggests that this methodol-
ogy might be successfully used for optimizing the parameters of bio-constrained
neural systems so as to fit target empirical data related to behavioural and/or
neural activity recordings (molecular, electrical, etc.).
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However, there are also important differences between the two fields of ap-
plication. The first one is the smaller emphasis of bio-constrained models on the
brain-body-environment interactions. Indeed, even though desirable in principle,
the simulation of these interactions is often computationally prohibitive if added
to the internal complexity of bio-constrained models. Second, and most impor-
tant, contrarily to the ALife approach the bio-constrainedmodeling approach
gives a great importance to the consistency of the model’s architecture and func-
tioning with biological anatomical and physiological evidence: these constraints
are indeed as important as those deriving from the target data. These differences
in the kind of models and in their scientific goals generate different problems and
require that the application of the GAs is adapted accordingly.

2.3 Methods: Parameter Search using Genetic Algorithms

This section describes in detail the methodology used to search the parameters
in dynamic bio-constrained models. The first step consists in identifying a set of
target data and building a model with an architecture and functioning consistent
with known anatomical and physiological empirical evidence. Then, the param-
eters to be searched and the fitness function to measure the parameters quality
must be defined in details.

The application of the GAs requires setting a number of features and meta-
parameters for the GAs themselves, before the model can start using this pow-
erful regression tool to search for the parameters that allow the model to best
fit the target data (validation process). Once the correct parameters have been
found (if they exist), the model is considered validated andit can be finally used
to produce predictions on new functional or anatomical phenomena.

The whole process can then be iterated aiming to produce increasingly com-
prehensive models furnishing integrative explanations ofmultiple data and ex-
periments.
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2.3.1 Target Data

The target data are a first fundamental source of constraintsof the model, and
are used to guide the process of the model validation. Targetdata may consist
of any kind of empirical data provided by the literature, including recordings of
neural activity (of single units or whole neural populations), of neuromodulator
dynamics, of behaviours exhibited by certain organisms, data related to different
kinds of lesions, and so on.

There are two major types of data: synchronous data and time series. Syn-
chronous data are represented by a setd of n integers, real numbers, or symbols
dj:

d = {d1, d2, ..., dn} (2.1)

Time series are instead represented by temporally ordered (usually numerical)
data, for example a vectord of n real numbersdj:

d = (d1, d2, ..., dn) (2.2)

The use of synchronous data poses only the problem of assigning to differ-
ent weights to different data (see section 2.3.5 below). Instead, data consisting
in time series pose further problems, as their single pointsare linked by time.
Indeed, the shape of data in time is often considered by the biologist more im-
portant than their absolute values as it represents the timedynamics of various
aspects of the studied phenomenon, often revealing important causal relations
between them. This temporal features of time series can be indirectly captured
by requiring that the model fits the absolute values of the data points without
directly taking into account time information. Alternatively, one can ask the GA
to search for parameters that reproduce the time derivatives of the time series, in
alternative or in addition to the request of capturing theirabsolute values.

An important aspect of biological data is that different replications of the same
experiments mostly produce different data, making it difficult to define the target
data to validate the model. If the different outcomes do not differ substantially,
a simple straightforward solution to the problem is to mergethe data gathered in
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the different replications by considering their average. In the case the data differ
substantially, one can try to isolate those data that have a lower variance and that
are more directly relevant for the theories of interest. In the case study we will
see how it is possible to give a higher importance to these sub-sets of data (see
also below the section on fitness).

2.3.2 Definition of the Architecture and Functioning of the Model

The definition of the architecture of the model and of the functioning mecha-
nisms of its components is of course of the most importance, as these aspects of
the model implement the biological assumptions and hypotheses that represent
the main contribution of the whole modeling research itself.

Despite the overwhelming amount of data produced by neuroscience, the con-
struction of models that can account for the available empirical data typically
requires the formulation of new hypotheses related to the existence of particular
architectural features or mechanisms that are not currently supported by neuro-
scientific evidence, or it may require to take a position withrespect to conflicting
theories. The hypotheses and assumptions that are implemented in a model are
validated as far as the model is able to reproduce the available empirical find-
ings, showing that those hypotheses are sufficient (even though not necessary)
for explaining the data.

The definition of the architecture of the model is based on three main kinds
of constrains: (1) biological constraints coming from the relevant neuroscien-
tific knowledge already available in the literature; (2) computational constraints
that must be considered for bulding a model that might allow to reproduce the
targe data; (3) epistemological constraints that push the researcher to identify the
minimum number of components and the simplest functioning mechanisms that,
on one side, conform with the known empirical evidence and, on the other, are
sufficient to reproduce and explain the target data.
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2.3.3 Overview of a Genetic Algorithm

This section illustrates the general procedure to implement a standard GA. This
procedure might in part change depending on the decisions made on the various
aspects of the algorithm (see below). The pseudo-code of theprocedure is shown
in Figure 2.3.3.

INIT Genotypes with initial parameter values

WHILE stopping criterion is not reached

Create Population of individual phenotypes from genotypes

FOR each individual of the Population

Compute the fitness of the individual according to the FitnessFunction

END FOR

Select the best individuals of the Population

Reproduce selected individuals thus reating a nuew population of Genotypes

Mutate the new Genotypes

END WHILE

Figure 2.1: The pseudo-code of a genetic algorithm procedure.

The application of a GA to find the parameters of a solution to an optimiza-
tion problem (e.g. a model to reproduce certain data) involves few fundamental
algorithmic steps, each of which has several variants. The first step consists in
encoding the parameters to be optimised in a numerical vector (the genotype).
These parameters might for example be the connection weights of a neural net-
work, or its learning rates, or the time constants of different sub-sets of leaky
neurons forming the network, etc. As a second step, a certainnumber (pop-
ulation size) of different genotypes of this type are generated, for example by
drawing their values randomly within certain ranges. Then each genotype (i.e.,
the set of parameters it encodes) is used to generate an instance of the model
(individual) so to have as many models as the genotypes (populationof individ-
uals). Next, each individual model is evaluated on the basisof the optimization
problem at hand: the better the optimization, the better itsscore (fitness). The
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fitness is then used to select a subset of individuals of the population that is used
to create a secondgenerationof genotypes with the same population size. The
genotypes of the selected individuals are used to create thenew population of
genotypes by randomly changing some parameters chosen at random (mutation)
and/or by mixing two or more selected individuals to form newones (cross-

over). The whole process of fitness computation, selection, and generation of
a new population is then iterated a certain number of times (number of genera-

tions). By iteratively letting parameters sets (genotypes) reproduce on the basis
of their ability to replicate target data (fitness), and adding random variations
trhough mutations and re-combinations, the evolutionary process is eventually
able to find optimal candidate solutions.

2.3.4 Selection of the Parameters to Evolve, their Encoding, and Ranges

An important aspect to decide before running the GA algorithm concerns the
parameters on which the GA should work. The definition of the parameters
involves three main decisions. The first decision is about the aspects of the model
that will undergo the optimization by the GA. In this respect, the parameters to
be selected to this purpose should have two features: (a) they should represent
aspects of the model that it is not possible to set to particular values on the basis
of known biological constraints; (b) one has good reasons tobelieve that they can
substantially affect the behaviour of the model with respect to the target data.

The second decision concerns the data structures conceivedto encode the
selected parameters. Based on theoretical reasons and simplicity arguments, the
initial proposals of GAs suggested to encode any type of parameter with binary
codes (Holland, 1975). The following research, however, has shown that GAs
work, or work even better, on data structures more similar tothe features of the
phenotype (often because it helps in compacting the search space). For example,
the most common case is to use parameters represented in a vector p of n real
numberspi (for example to encode the connection weights or other quantitative
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aspects of a neural network; see Mitchell, 1998):

p = {p1, p2, ..., pn} (2.3)

Alternatively, one might use discrete or even symbolic parameters to determine
qualitative aspects of the model, for example the particular features of the Heb-
bian learning rule used by the system or its architectural aspects (Floreano and
Urzelai, 2000; Vonk et al., 2002).

The third decision involves the imposition of limits to the range of values that
each parameter can assume. In principle, it is possible to establish parameters
with free ranges. However, often the nature of the encoded parameters (e.g.,
learning rates, neural unit decays, neuromodulator efficacy, learning rule types,
etc.) impose biological constraints to the ranges of the evolved parameters. For
example, if some parameters encode the strength of glutamatergic or GABAer-
gic connections, they should be constrained to assume respectively positive and
negative values. As we will see in the present model of appraisal, other consid-
erations might also lead to bound the ranges of evolving parameters also leading
to the advantage of reducing the size of the parameter space boosting the evolu-
tionary process and reducing the risk that the search falls in local-optima (i.e.,
non-optimal solutions surrounded by worse solutions).

2.3.5 The Fitness Function

The fitness function is the means through which a particular parameter solution
is evaluated. In our case, it measures the distance between the data produced
by the model and the target data according to some matrix. A matrix that can
be suitably used in our case, borrowed from linear and non-linear statistical re-
gression approaches, is the mean square error,MSE, which takes the average of
the square differences between the target data elementsdj and their equivalent
bj provided by each phenotypem:

SMNm =

∑n
j

[

(dj − bm,j)
2
]

n
(2.4)
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After the fitness function is applied, the resulting fitness might be scaled be-
fore being used to select the best individuals. The scaled fitness is a number
obtained on the basis of a particular function of the fitness value. For example,
the scaled fitness of an individual might be the rank of its fitness within the pop-
ulation (i.e., a number between 1 and P, where P is the size of the population).
The scaling allows tuning the relation between the performance of individuals
and their probability of selection (see below).

A last very important aspects related to the fitness and its application to bio-
constrained models regards the fact that the target data do not have all the same
importance. For example, within the points of a time series one might give a high
importance to a particular aspect of the curve with respect to another portion of
it. For example, one might want that the parameters found by the GA allow the
model to closely match some data points (e.g., a certain neuromodulator being
precisely at the baseline level in a certain period of time) while tolerating some
inaccuracy for some other data points (e.g., the neuromodulator level being at
some positive values in another period of time). An effective solution to this
problem is to assign a different weight to the error of different data points:

SMNm =

∑n
j

[

wj · (dj − bm,j)
2
]

n
(2.5)

wherewj represents the weights assigned to each data point. This solution is
rather important as it allows to quantify and operationalise the fact that one gives
high importance to particular qualitative aspects of the target data.

2.3.6 Setting Other Features of the Algorithm and the related Metaparam-
eters

This section briefly describes the other aspects of a geneticalgorithm that have
to be set before running it. These aspects are not specific to the application of
a GA to finding the parameters of a bio-constrained neural model, but they are
important because they affect the success and efficiency of the algorithm.
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Initial population. There are various ways of defining the values of the initial
population of genomes. The simplest one is to generate them randomly on the
basis of a uniform probability distribution. A more effective way is to select
the initial genotypes so that they are (approximately) uniformly distributed in
the genotype space. This choice avoids generating too similar genotypes, and
reduces the possibility that the search falls in a local optimum.

Selection scheme. Once all individuals of one generation have been tested,
the selection scheme determines which individuals are selected for reproduction
according to their fitness. A number of possible selection schemes have been
developed, among which the most popular are theroulette wheel, therank, and
thetournamentselection schemes.

In the roulette wheel selection scheme individuals are represented as slices
in a wheel such that the size of each slice is proportional to fitness of the cor-
responding individual. The wheel marker then spins for a random time and the
individual selected for reproduction is the one corresponding to the slice where
the marker stops. In this way, the probability of reproduction for each individ-
ual corresponds to the fitness of the individual divided by the total fitness of the
population. This selection scheme has the problem of premature convergence: at
the beginning of the simulation the variance in the fitness isusually very high so
the fittest individuals will tend to spread in the populationvery fast; then, when
the population has converged –meaning that all individualsin the population are
very similar to each other– all the individuals will tend to have approximately the
same fitness and hence the selection probabilities, so individuals will be selected
at random and this will prevent further improvements.

The rank selection scheme consists in selecting individuals with a probability
which is not proportional to their fitness, but which dependson the ranking of
the individuals in the population. In the most simple and common rank method,
one sorts the individuals according to their fitness and thenselectsn best indi-
viduals for reproduction. This method avoids that the population converges too
quickly by both preventing that the fittest individuals reproduce too quickly at
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the beginning of evolution, when the fitness variance is high, and keeping high
selection pressure afterwards, when the fitness variance islow.

The tournament method can be described as follows: choose two individual
randomly from the population, select the fittest for reproduction, return the two
individuals to the population so that they can be chosen again and repeat the pro-
cedure until you have selected the right number of individuals. This procedure
produces a selective pressure similar to that produced by the rank method, but
is usually less computationally expensive than it as it avoids sorting the entire
population, which can be very time-consuming.

Reproduction. Reproduction can be either ”sexual” or ”a-sexual”. The dif-
ference between these two reproduction schemes lies in the fact that the former
includes the application of cross-over between the genomesof two parents, while
the latter is based on the cloning of single genomes. The simplest kind of cross-
over is the single-point one: take two selected individuals; choose randomly one
point for dividing the genomes of the two in two parts; generate one new individ-
ual by taking the first part of the genome from the first parent and the second part
from the second parent and another by taking the first part from the second par-
ent and second part from the first parent. One problem in the use of single-point
cross-over is that it treats different points in the genome differently: in particu-
lar, the end-points of the genome strings are treated differently from the central
ones in that they will always be exchanged. One solution is toadopt a double-
point cross-over: two points are randomly selected and the segments which are
exchanged are the two between those two points. Applying double-point cross-
over is like treating the genome as a circle, so that there is no difference in the
probability of cross-over between the centre and the periphery of the genome.
An extreme variant of this solution is to take each parameterof the genotype of
the new individual from either one of the two parents with thesame probability.

Mutations. After having produced the right number of genomes by either cloning
individuals or by applying cross-over between pairs of parents, mutations are ap-
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plied to those genomes with a certain probability. There arevarious ways of mu-
tating the parameters of genomes, which depend on the genetic enconding that
have been chosen. If the genetic encoding is binary, mutations consist in flipping
the binary value of each parameter with a certain probability. If the parame-
ters are real numbers, one can either replace the mutating gene with a randomly
chosen value or change the current value by adding to it a random value cho-
sen within a certain range on the basis of a certain probability distribution, for
example flat or Gaussian.

Elitism. Whatever the selection and reproduction schemes chosen, one can
prevent that good solutions are lost by not being selected orbeing destroyed
by cross-over and mutation by retaining the bestn individuals (one or more) and
assuring that they are included into the next generation without any modification.
This can substantially improve the effectiveness of the evolutionary research.

Stopping criterion. Another thing to be decided is the criterion for stopping
the iterations of the algorithm. The simplest stopping criterion consists in stop-
ping the research when a certain number of generations is achieved. This is very
easy to implement and ensures that the algorithm stops aftera fixed amount of
time. On the other hand, a lot of time might be wasted either because the fitness
of the best individual of each generation has reached a plateau well before the
end of the simulation, or, even worst, because the evolutionary process has not
completed when the last generation has been reached and so a good solution has
not been found due to the early stopping of the algorithm.

Another possible stopping criterion is based on the fitness of the best indi-
vidual of a given generation: the algorithm stops whenever the best individual
has reached a fitness that overcomes a given threshold. This criterion ensures
that the process stops only when a good set of parameters has been found, but
has the problem that if a good set of parameters can not be found (or even if the
evolving population has converged on a local maximum) the algorithm can go
on forever. For this reason, this criterion is typically used in conjunction with the
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previous one, so that the algorithm stops either when the fitness has overcome
the threshold or after a certain number of generations have been accomplished.
An effective variant stops the research when the improvement of fitness of the
best individual in the lastn generations is below a certain threshold.

Another possibility is to stop the research when the variance of the genomes
of a generation is below a certain threshold. The rationale is that a very low
genetic variability means that the algorithm has convergedon a good solution
(either local or global), and so a further improvement in fitness is unlikely to
occur. One shortcoming of this method is that it might be difficult to set the
appropriate threshold. Another one is that calculating genetic variance might be
time-consuming.

Replications. When evolutionary experiments are repeated several times by
using different starting conditions, often slightly or substantially different solu-
tions are obtained. This happens in particular when the genotype space is large
and/or when the fitness test is stochastic and involves complex processes (e.g.,
as those used in ALife, in particular when one evolves systems that learn during
the test). In this cases it is important to run the algorithm several times so that
the parameters space is explored effectively.

Meta parameters. Most of the above specified methods have their own (meta-
)parameters that must be set for running the genetic algorithm, for example:
number of individuals in the population, number of best individuals to be selected
(if one uses the ranking method of selection), cross-over and mutation probabili-
ties, number of best individuals for elitism, number of generations and/or fitness
or genetic variance thresholds, number of replications of the whole evolutionary
process.

All the decisions about the meta-parameters and the methodsmust be taken
on heuristic grounds, because the best combination of methods and parameters
crucially depends on the evolutionary research problem at hand. In fact, al-
though there is an entire community of researchers devoted to study which kinds
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of methods work bests for which kind of problem (Evolutionary Computation),
no clear rule has been found so far, and whereas many useful new methods are
being developed and a lot of knowledge on the pros and cons of different evolu-
tionary set-ups is being produced, the actual decisions on which methods to use
and on the meta-parameters must be taken by combining expert-knowledge with
common sense and trial-and error. Nonetheless, it is important to clarify that
whereas it might be difficult to find the combination of methods and metaparam-
eters that works best in any specific case, it is not difficult to find a combination
that is satisfying for our purposes, i.e. that can reliably be expected to find a
set of model parameters that is able to reproduce our target data in case it exists
(provided that the evolutionary process is replicated several times).

2.3.7 Falsification vs Validation

Once the search for the parameters of a bio-constrained model is run, one can
obtain different levels of fit of the target data. One can set acertain threshold of
quantitative and qualitative level of such fit above which the model is considered
to have passed the test, and below which the model is considered to have failed
it. The case of failure can be considered a form of weak falsification. Indeed, as
bio-constrained models tend to have several parameters andto be very complex,
the failure might depend on the fact that the GA felt in a localminima and not
on the fact that the model is not sufficient to reproduce the target data. Notwith-
standing this limit, it is important to consider that such falsification is however
much stronger than, for example, a falsification based on a manual search for the
parameters.

In the case the model passes the target-data test, this validation should be
never considered a definitive confirmation. In fact, as mentioned above, bio-
constrained models often contain some hypothesis and mechanisms that com-
putationally are capable of producing certain needed functions but that are not
supported by direct biological evidence. Moreover, bio-constrained models of-
ten contain a large number of parameters. On one side this is justified by the fact
that they are required to satisfy many constraints, namely not only the request to
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fit target data but also the constraints imposed on its architecture and function-
ing. On the other side, however, this increases the possibility that an excessive
number of parameters are introduced so that the number of degrees of freedom
of the model exceeds the number of constraints imposed on it.

One way to further corroborate the model is of course to increase the number
of constraints imposed on it, both in the form of the requirement to reproduce and
account for further target data (e.g., from other experiments), or to impose further
biological constraints on its architecture and functioning mechanisms. The other,
even more important, way is to derive from the model new predictions and test
them with new empirical experiments.

2.4 The case study: modelling the appraisal of controllability

2.4.1 Target Data Analysis

The model is required to provide an explanation of the mechanism resulting in
the releases of DA and norepinephrine (NE) in the ventro-medial prefrontal cor-
tex (vmPFC) and the release of DA in nucleus accumbens (NAcc)during re-
straint tests run with rats (Pascucci et al., 2007). The releases in the vmPFC
have been recorded on naive rats only, whereas DA release in the NAcc has been
recorded both on naive rats and on rats repeatedly subjectedto restraint (Cabib
and Puglisi-Allegra, 1996): see figures 2.2 and 2.3 respectively.

The test consists in placing each rat in a restraint box, keeping it immobile by
leaving only the head outside the box (more details in Pascucci et al., 2007): the
microdialysis samples in naive rats (labelled as ”day 1” in the graphs) were col-
lected every 20 minutes for the whole duration of the experiment -240 minutes-
generating 13 samples (first sample collected at time 0), whereas in the case of
the rats repeatedly exposed to the stressor (labelled as ”day 6” in the graphs),
the 13 samples have been collected in 120 min. using a 10 min. interval, in rats
exposed to restraint once per day, 6 days in a row. Using the perspective of the
GA the target data consist of 4 time series (two for the recordings of the two
neuromodulators in the vmPFC and two for the recordings of DAin NAcc in the
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Figure 2.2: NE (left) and DA (right) releases in vmPFC recorded with microdialysis in rats subjected to restraint

(modified from: Pascucci et al., 2007).

two different conditions), each encoded in a vector of 13 real numbers, for a total
of 52 data points.

An analysis of these target data gives an example of the reason why it is not
useful to use the GA to pursue only a quantitative match and that qualitative
goals should be taken into consideration as the main objective. For instance,
the pictures in figure 2.3 (modified from Cabib and Puglisi-Allegra 1996; Pas-
cucci et al. 2007) show data recorded during the same type of experiment and
performed in the same laboratory, on different rats: e.g. the graphs point out
that the highest peak of DA in NAcc is reached after 20 minutesin both cases,
but the single value is significantly different (+75% vs +50%of the basal level),
so that the vector of the time series results in quantitativedifferences. Yet, the
dynamics and the slopes characterising the two curves are significantly similar:
the presence of DA in NAcc shows a fast increment and a single peak after 20
mins, before starting a constant decrease which lasts for the whole experiment.
These considerations imply that the timing of the NAcc DA peak produced by
the model has a major importance if compared with the actual value which may
tolerate variances. The problem described for the DA recordings is not unique:
all the recorded data belonging to the target time series arecharacterised by sim-
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Figure 2.3: Meso-accumbens DA releases recorded with microdialysis intwo rats, both subjected to restraint

(modified from: Pascucci et al., 2007 and Cabib and Puglisi-Allegra, 1996, respectively). Since test and recording

procedure can be considered identical, it is possible to compare the first 120 minutes of the left figure with the whole

day-1 dynamics showed in the right figure: note the quantitative difference and the qualitative similarities between

the two curves.

ilar differences.
An important decision about the target data is whether to consider all the

points of the time series as equally important or to require different degrees of
accuracy for different sub-sets of the data. The example here proposed addresses
the psychobiological problem of finding the mechanism that regulates the re-
lease of dopamine in the NAcc in the two conditions of naive and overtrained
rats: Pascucci et al. (2007) found that both below- and above-baseline releases
of DA in NAcc are determined by the activity in the vmPFC (and its modulation
performed by DA and NE), entailing the role of guidance of thevmPFC in gen-
erating the target effects in the two conditions (more details in chapter 3 of this
thesis).

Thus, the optimization process should produce a model that generates time
series with these features: the presence of DA in NAcc must show a first peak at
the beginning of the experiment in the naive condition, but not in the repeatedly
exposed one. This peak must be temporally tuned with both first peaks of DA
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and NE recorded in the vmPFC. On the contrary, the two conditions must not
show significant differences in the second part of the experiment, when limbic
DA decreases showing a release below the baseline. Finally,the accuracy of the
dynamics characterising DA in NAcc must be given a higher priority if compared
with the one characterising the two releases recorded in thevmPFC, which are
nonetheless going to be considered as successfully simulated if they will show a
substantial qualitative match with the target data.

2.4.2 Definition of the architecture of the model

The core neural systems of the model relies on the two areas that are responsible
for the release of DA and NE (the Ventral Tegmental Area, VTA,and the Locus
Coeruleus, NE, respectively), and the ventro-medial Prefrontal Cortex (vmPFC),
which is considered to be responsible for the role of guidance of the dynamics
of DA in NAcc: for a detailed description of the architectureof the model, its
functioning and its computational features, see chapter 3,sec.3.2, of this thesis.

In rats, vmPFC is mainly composed of the PL and IL cortices. The present
model is based on the hypothesis that during prolonged and inescapable stress-
ful conditions the IL learns to inhibit the PL, which is assumed to control goal-
directed behaviors (Yin and Knowlton, 2006). As a consequence, an anti-Hebbian
learning rule is implemented between PL and IL, which is assumed to play a piv-
otal role in explaining the complex dynamics that characterises the target data.

Given the particular connectivity bridging the vmPFC and the VTA (Carr and
Sesack, 2000; Jackson et al., 2001) and considering the important role the Amyg-
dala (Amg) plays in any emotionally-driven behaviour and incontrolling the ac-
tivity of both LC (Pitkänen et al., 2000) and VTA (Ahn and Phillips, 2002; Fudge
and Haber, 2000), this neural system has also been added to the model. Finally,
all the connections bridging the various neural componentsof the model, corre-
sponding to either glutamatergic or gabaergic connections, have been selected on
the basis of the anatomical empirical evidence existing in literature (see figure
2.4).

This brief description of the procedure followed to design the architecture of
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Figure 2.4: Evolution of the neural architecture of the two model. The left picture represents the first developed

version, which the GA showed to be unable to replicate all target data (falsification). The right picture represents the

model that succeeded in reproducing all target data (validation). Continuous red and blue lines represent, respec-

tively, glutamatergic and GABAergic connections, whereasblack lines represent the input. Dashed lines represent

neuromodulatory connections.

the model, based on the incorporation of biological constraints, exemplifies how
easily the complexity of the agent’s neural network increases and hence how eas-
ily the problem of setting the values of all its parameters may become unfeasible.
Indeed, it is be possible to design architectures capable ofreproducing the same
target data reproduced here while not incorporating the biological constraints re-
lated to the investigated phenomenon: these architectureswould have a much
simpler architecture and functioning and by far fewer parameters. However,
these architectures would not be useful to accomplish the overall goal of this
research as they would not allow to understand the detailed brain mechanisms
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underlying the investigated phenomena. Moreover, in the long run they would
miss the important goal of accounting for an increasing number of experiments
while keeping intact the core principles of the model.

2.4.3 Selection of the parameters

The architecture has about 30 connection weights, several baselines assigned to
the dopaminergic and noradrenergic areas (which simulate the activities these
populations have independently of external input), decay rates characterising
leaky integrators, reuptake and depletion rates for each neuromodulator, a Heb-
bian learning rate, and several coefficients used to simulate additive and multi-
plicative effects of the neuromodulators on target areas.

Each of these parameters may be incorporated in the vector representing a
genotype of the GA. However, in this case the parameter spacewould be huge
and, consequently, the search for an optimal set of parameters by the GA would
be very time consuming and subject to falling in local optima. For these reasons,
it was necessary to work on the list of the possible parameters to select those to
be optimised by the GA and those that could be set by hand: someparameters
were excluded on the basis of biological constraints (e.g.,the leaky decays of the
neural units had to be consistent with the actual decays of the neural population
they simulated), some were set to 1 as the rest of the system was assumed to
be able to compensate a possible wrong choice using the otherfree parameters
(e.g., the value of 1 was used for most weights bridging the input signal to their
targets).

Section 2.3.4 briefly described the problems arising from the selection of the
ranges of each parameter. In this case, most of the weights assigned to the con-
nections vary from a minimum of 0.3 to a maximum of 5 (and the equivalent neg-
ative for inhibitory connections): this choice is caused bythe attempt to avoid
disproportional connection weights. The two exceptions (concerning PL-VTA
connectivity) were introduced as the GA tended to find valuesclose to the lower
limit. As a consequence, this limit was lowered but not set to0 as biology pro-
vides a clear constraint concerning the existence and importance of those specific
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connections (these connections might be necessary to implement other important
functions, so we wanted to see whether the system could be capable of tolerating
their presence when simulating the target data). This criterion of the change of
the range limits depending on the resultsf of the GA was also useful for setting
the ranges of the parameters that had minor or no constraints: for instance, the
values corresponding to the levels of DA and NE in cortex in correspondence of
a depletion.

Finally, the additive coefficients of the neuromodulators were forced to evolve
low values,0.1 < value < 0.4, in order to prevent the GA from finding high
values of the additive component with respect to the multiplicative components,
as this would have made the function of neuromodulators similar to that of neu-
rotransmitters. Final values are showed in table A.2.

2.4.4 GA Fitness function and meta parameters

The model was implemented in Matlabc© using the Matlabc© GA toolbox for
the genetic algorithm. We briefly present here our most important choices for the
meta-parameters and the main features of the chosen functions, but it is important
to note that most of the GA options were left to the default values.

The population consisted of 200 individuals and the evolution was run for 200
generations (fixed number). The parameters were normalisedin 0 < value < 1

to make the mutation ranges homogenous for all parameters. The initial values
of the genotypes of the population were chosen to be approximately uniformly
distributed on the whole space of the parameters (see appendix, tab.A.2) based
on the function ”feasible”.

The scaling function chosen was ”Rank” (default option) that encodes the
fitness values into the numerical ranks of individuals. Withrespect to elitism,
a single individual characterised by the best fitness was chosen to be replicated
without any cross-over and mutation (elite = 1). The other individuals of the new
population were created in two ways: 80% with both crossoverand mutation,
and the residual 20% with mutation only (default options).

The function chosen to perform the selection of individualswas ”stochastic
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uniform” (default option) which for each individual generates a number of off-
spring proportional to the ratio between its fitness and the total fitness of the
population. The function chosen to perform the crossover was ”scattered” (de-
fault option) which produces each individual based on a random selection of each
parameter from either parent. The mutations were performedusing the function
”adaptive feasible”. This function performs random mutations biased toward or
against the direction of the last mutation depending on the fact that it increased
or decreased the fitness (the size of the mutation diminisheswhen a limit of a
range is approached).

Finally, a weighted mean squared error was used as fitness, assigning a weight
of 10 to the square error related to the curves describing theDA release in NAcc,
in the naive condition. All other point data were assigned a weight of 1.

2.4.5 Tuning the architecture using Genetic Algorithm

The first model investigated was unsuccessful as the GA showed to be unable
to find the parameters that produced a satisfactory fit of the target data. In par-
ticular, the simulated DA dynamics in vmPFC and NAcc during the second part
of the experiment showed substantial qualitative and quantitative difference with
respect to the target data (see figure 2.5).

An analysis of the best individual performance made it clearthat during the
second part of the experiment the system required a positiveinput reaching the
mesocortical module of the VTA and a negative one reaching the mesolimbic
module of the same system. The timing of these two missing signals is the
same and – taken for granted the biological constraint that the cortex has the
role of guidance of the described dynamics during stress coping – both signals
must directly or indirectly originate from the change of activity characterising
the vmPFC (see figure 3.5c,d).

The literature provides evidence that this new neural system may be repre-
sented by a channel of information starting from the Hypothalamus (Hyp) and
periaqueductal gray (PAG) and reaching the VTA via Dorsal Raphe (DR): the
latter system is controlled by the activity of the vmPFC (Peyron et al., 1998;
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Figure 2.5: Simulation of the releases of neuromodulators (NE in vmPFC,left; DA in vmPFC, centre; DA in

NAcc, right) recorded during a test performed on ”naive” agents using the early version of the model (which does

not have the Hyp/PAG/DR component). Note the differences inthe right parts of the graphs, when comparing them

with the target data (figure 2.3 and 2.2).

Radley et al., 2009) and it is known to have an important role in experiments
concerning the lack of control of aversive stimuli (Amat et al., 2005). For the
purpose of this model, these systems can be considered as if they were a sin-
gle channel (Hyp/PAG/DR) because they both concur to the activity of the VTA
with the same dynamics and timing (Bandler et al., 2000; Geisler et al., 2007).
The neural architecture of the model was then modified accordingly and the GA
could be run again with few additional parameters.

This time the GA proved to be successful (see fig. 2.6, validating the hy-
potheses underlying the model, and providing a useful tool for producing new
predictions to be empirically tested. The fitness (mean square error) reached
by the best individuals of the two models are slightly different: the first model
(without the Hyp/PAG/DR component) reached a fitness of 25.2576, whereas the
second one reached a fitness of 22.2543 (with a difference of about 13.45%).

Still, considering the high variances found in the biological microdialyses,
the rough information provided by the fitness value is not sufficient to establish
a strong preference between the two models concerning theirbiological accu-
racy. However, the qualitative comparison between the two model clearly speaks
in favor of the second model and against the first one: the target dynamics and
the slopes which have been considered as important by the biologists are clearly
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replicated by the second model but not by the first one (see in particular the dy-
namics characterising the second part of the experiment -passive coping phase-
in figures 2.3 and 2.2).

This whole process of weak falsification and validation implies that the as-
sumptions underlying the second model, in contrast to thoseof the first one, are
sufficient for explaining the available empirical data, andcan thus be plausibly
considered as representing the mechanisms that take place in the brains of real
rats in conditions of long-lasting, inescapable stressfulconditions. Hence, the
model can now be used for producing new predictions to be tested in novel em-
pirical experiments.

2.5 Results and predictions

Once the model manages to successfully replicate the targetdata, the causal
processes taking place in the simulated agent can be considered a reliable sim-
plification of the actual functioning taking place in real rats during the target
experiment. Thus, the established analogy between the model and the actual
brain of the rat allows drawing several important conclusions about the causal
processes realising the appraisal.

The model pushes forward the hypothesis that the evaluationof the stressor
controllability is a consequence of the interaction between IL and PL, which al-
lows detecting discrepancies between actual and expected outcomes associated
to performed or attempted actions. Initially, restrained rats execute actions be-
longing to their repertoire to try to actively cope with the new stressing condition,
pursuing the goal to put an end to it. During this phase, the expected action-
outcome association is provided by the PL, whilst IL provides the ”mismatch
control” being activated by the presence of significant differences between the
actual result of the attempted action and the expected one (Balleine and Dickin-
son, 1998; Coutureau and Killcross, 2003; Killcross and Coutureau, 2003).

This control is performed via a direct inhibitory effect IL has on PL and via
a broad opposing influence these cortices have on various sub-cortical areas: the
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Figure 2.6: Simulation of the releases of neuromodulators (NE in vmPFC,left; DA in vmPFC, centre; DA in NAcc,

right) recorded during a test performed on ”naive” and ”repeatedly stress exposed” agents using the final version

of the model (characterised by the presence of the Hyp/PAG/DR neural area). Note all ”day 1” dynamics, which

almost perfectly match the target data and ”day 6” DA in NAcc dynamic, which matches its target and establishes

a prediction (time series of target data lasts 120 minutes, which is half of the simulated time). All other simulated

releases (day 6 and day 12) represent the model prediction concerning releases of the neuromodulators.

more the action-outcome associations fail, the more IL increases its inhibition
(in the model, via anti-Hebbian learning): the progressivesuppression of PL
output is the neural correlate signalling the fact that every action belonging the rat
repertoire is failing in removing the stressor. When PL is completely inhibited,
the desired outcome is no longer pursued because it is finallyevaluated as beyond
the possibilities of the agent: therefore, in the present experimental conditions,
the stressor is perceived as uncontrollable.

The end of the process resulting in the appraisal of controllability coincides
with the switch of coping in naive rats: the active coping, characterised by high
DA in NAcc e high NE in cortex, is triggered by high neural activity in PL. As
soon as PL is inhibited by IL, a cascade effect involving Amg and Hyp/PAG/DR
eventually affect DA releases, causing the dynamics described for the passive
coping.

It has been mentioned that after six repetitions of the restraint test (one test
per day) sham rats exhibit a NAcc DA level which never goes above the base-
line in the first phase and decreases below baseline after 60-80 mins (figure 2.3).
At the same time the rats show no initial behavioural attemptto actively cope
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with the stressing condition. The model supports the hypothesis that repeated
experiences of the stressing test make rats learn that the stressing condition it
is experiencing is not controllable: the appraisal of controllability is then eas-
ier because the cortical interaction between IL and PL has already partially or
completely inhibited the association between actions and desired outcome in the
recognised restrained conditions.

The model provides a specific explanation for the described phenomenon, as-
cribing the dynamic of DA in NAcc to the presence of NE in cortex: after 6 ex-
posures, the partial inhibition of PL results in diminishing the input reaching the
LC (directly from the cortex and indirectly via the Amg). As aconsequence, LC
is unable to release the initial high large amount of NE back in the cortex (figure
2.6, left), resulting in a furthered diminished activity inPL and -consequently-
in Central Amg (CeA) and therefore, in the absence of the initial peak of DA
generated by the mesolimbic area of the VTA.

This prediction is consistent with the known positive causal relationship be-
tween NE in vmPFC and DA in NAcc, which has been described using selective
cortical depletion (Pascucci et al., 2007) and is part of thesuccessfully simulated
data gained using the present model (see chapter 3, sec. 3.3).

The simulation of the repeated experience has been secured strengthening the
initial weight of the synapses bridging IL to PL: this choicesimulates the fact that
there has been already a learning process taking place between the two cortices,
followed by a spontaneous partial recovery. Interestingly, the starting point is
rather arbitrary and once found the parameter allowing the simulation of the data
characterising 6 repeated exposition, it is possible to double that amount to have
a hint of the results of a stressful experience repeated several more times (the
values of 0, 1 or 2 have been used respectively for the day 1, day 6 and day 12
simulated test).

Simulating the case of day 12 of repeated exposures to the same stressor:
the model predicts that the rats would show an immediate decrease of NAcc DA
below baseline, starting the passive coping strategy as soon as the agent perceives
the presence of the stressor. The mechanism realising this dynamic relies once
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again on the inability of PL to activate the response of the LC(and the initial
high release of NE), but this time activity in PL is not even sufficient to inhibit
Hyp/PAG/DR which consequently almost immediately enhancethe activity of
the circuit involving the mesocortical DA (which reaches its maximum earlier
than in any other test) and IL: this circuit indirectly inhibits the dopaminergic
area of the mesolimbic VTA, thus determining the immediate passage to the
second phase (corresponding to an immediate behavioural despair).

This complex interaction among several neural areas is consistent with both
unpublished material concerning DA release in NAcc (experiments carried out
by the same group providing the target data for this model) and with published
data concerning serotoninergic release (related to DR activity) in a different set
of experiment relying on uncontrollable stressors (Amat etal., 2005; Maier and
Watkins, 2005, 2010).
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Chapter 3

Corticolimbic catecholamines in stress: A
computational model

Abstract

The brain determines what is stressful and on this basis regulates physiological and be-
havioural adaptive responses. Converging evidence ascribes a major role to catecholamines
in these processes: in particular, data show that tonic norepinephrine (NE) and dopamine
(DA) outflows in the ventromedial prefrontal cortex (vmPFC)regulate DA outflow in the
nucleus accumbens (NAcc). As frontal cortical areas are involved in the appraisal of en-
vironmental challenges, and DA transmission in the NAcc is involved in active and passive
coping, the interplay between cortical NE and DA in the cortex and subcortical DA could
translate the appraisal of the stressful experience into the motivational state required to deal
with it adaptively. This paper proposes a computational system-level model of the brain
mechanisms underlying these processes, grounding it on three key hypotheses: (a) vmPFC
NE allows prelimbic cortex (PL) to guide active coping strategies and energizes these re-
sponses by enhancing NAcc DA outflow; (b) vmPFC DA allows infralimbic cortex (IL) to
block active coping attempts, when these are unsuccessful,by decreasing NAcc DA levels
below the baseline; (c) learning processes involving IL andPL lead to the transition be-
tween coping strategies. The model, whose architecture relies on known functional and
structural connectivity of the brain areas involved, is validated by reproducing the fluctua-
tions of target catecholamines measured in three conditions: sham, vmPFC NE depletion,
and vmPFC DA depletion. The model represents the first integrated operational explana-
tion of the investigated phenomena and produces predictions that can be tested in future
empirical experiments.

3.1 Introduction

Stressful events (stressors) are experiences that an organism appraises as dif-
ficult to control or avoid by relying on its current repertoire or physiological,
behavioural, and psychological reactions (Anisman and Matheson, 2005; Folk-
man et al., 1986; Huether et al., 1999; Lazarus, 1993; Ursin and Eriksen, 2004).
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After a first primary appraisal, which leads to an event as being classified as
challenging, the organism implements an active coping strategy based on suit-
able responses (Ganzel et al., 2010; McEwen, 2007). Througha secondary ap-
praisal the organism establishes whether the stressor is controllable/avoidable
through active coping strategies, or uncontrollable/unavoidable, thus requiring
a shift toward a passive coping strategy aimed at saving energy and resources.
Converging evidence suggests that stress appraisal processes involve the frontal
cortices (Amat et al., 2005; Maier and Watkins, 2010; Ohira et al., 2008; Phan
et al., 2004; Salomons et al., 2007; Wager et al., 2008).

The dynamics of cortical and limbic tonic amines play a key role in the brain
reaction to stress (Amat et al., 2005; Bland et al., 2003; Cabib and Puglisi-
Allegra, 1994; Cabib et al., 2002; Inglis and Moghaddam, 1999; Maier and
Watkins, 2005; Pascucci et al., 2007; Puglisi-Allegra et al., 1991). During stress-
ful experiences, increased tonic dopamine (DA) levels within nucleus accumbens
(NAcc) are associated with the expression of active coping strategies aimed at re-
moving or escaping the stressor (Cabib and Puglisi-Allegra, 1994; Cabib et al.,
2002; Grappi et al., 2003; Mangiavacchi et al., 2001; Rada etal., 1998; Scor-
naiencki et al., 2009). Instead, decreased levels of tonic DA in NAcc are associ-
ated with the implementation of passive coping strategies (Imperato et al., 1993;
Mangiavacchi et al., 2001; Pascucci et al., 2007; Pothos et al., 1995; Puglisi-
Allegra et al., 1991; Rossetti et al., 1993). These observations are consistent
with a widely shared view according to which tonic mesoaccumbens DA sup-
ports response vigor in pursuing costly goals (Cagniard et al., 2006; Floresco
et al., 2008; Niv et al., 2007; Salamone et al., 2003).

In this paper we propose a system-level model that explains the slow dynam-
ics of tonic catecholamines involved in the appraisal and coping of long-lasting,
inescapable stressful situations, focussing on the brain mechanisms through which
NE and DA levels in vmPFC regulate DA levels in NAcc. The main hypotheses
pushed forward by the model are: (a) high NE in vmPFC allows prelimbic cor-
tex (PL) to contribute to performing goal-directed behaviour and to increasing
NAcc DA via its control over sub-cortical regions such as theamygdala; (b) high
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DA in vmPFC allows infralimbic cortex (IL) to drive NAcc DA levels below
baseline both via its connections to VTA and to various sub-cortical areas; (c)
learning mechanisms leading IL to progressively inhibit PLcause the transition
from active to passive coping strategies. The model represents the first inte-
grated operational explanation of the investigated phenomena and can be used
as a framework to produce predictions to be tested in empirical experiments and
to build more detailed models, e.g. for investigating humanpathologies such as
depression.

3.2 Methods

3.2.1 The target data: microdialysis experiments in sham and vmPFC
DA/NE depleted rats

The target experiments tested the causal relationship between stress-induced
changes in NE and DA outflow in vmPFC on DA in NAcc (evaluated byintrac-
erebral microdialysis) by means of a selective depletion ofeach catecholamine
in the vmPFC through local infusion of a neurotoxin 6-hydroxydopamine (6-
OHDA), following selective protection of NE or DA by peripheral administration
of desipramine or GBR 12909 respectively (see Pascucci et al. 2007, for method-
ological details). Throughout the experiments rats were subjected to restraint, a
common psychogenic stressor (Figueiredo et al., 2003).

Sham-depleted (Sham) animals showed the same pattern of cortical and sub-
cortical stress responses as observed in non-manipulated rats (Pascucci et al.,
2007). The immediate impact of the novel stressful experience promoted an in-
crease of NE and DA in dialysate from the vmPFC that peaked between 20-40
min from stress onset and then declined. However, the increase in NE levels
was much larger than the DA increase (35-40%) and once havingdeclined to
pre-stress (baseline) levels it stabilized and remained unchanged throughout the
stressful experience. Instead, DA levels showed a second peak and stabilized to
a plateau of 70% of baseline levels. Changes in DA levels in dialysate samples
collected from NAcc were characterized by a peak increase within 20 minutes
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NE in vmPFC, real data

(a)

DA in vmPFC, real data

(b)

DA in NAcc, real data

(c)
Figure 3.1: Levels of NE (a) and DA (b) measured in the vmPFC, and DA measured in NAcc (c), during four hours

of restraint experiment run in three different conditions:sham, depletion of vmPFC NE, and depletion of vmPFC

DA. Modified from Pascucci et al. 2007

from stress onset followed by a decline below basal levels that reached a plateau
(-40% of baseline) by the end (240 minutes) of the stressful experience (figures
3.1a-c).

The depletion procedure did not influence baseline levels ofcatecholamine
measured following 3 days of recovery from the surgery. Instead, depletion of
each catecholamine in the vmPFC had specific effects on the cortical and sub-
cortical stress responses. NE depletion selectively prevented stress-induced NE
outflow in vmPFC and DA outflow in NAcc, whereas DA depletion selectively
prevented the later large increase in cortical DA and the reduction of NAcc DA
below baseline levels (Pascucci et al. 2007 and figures 3.1a-c).The experiments
targeted with the model (Pascucci et al., 2007) involved rats that were restrained
for four hours, a condition that is known to be highly stressful (Figueiredo et al.,
2003). Figures 3.1a-c show the levels of NE in vmPFC, and of DAin vmPFC
and Nacc - measured during the experiment through microdialysis - as percent
changes with respect to the mean of three samples collected prior to the stressor.

These data demonstrate a positive causal relationship between NE in vmPFC
and DA in NAcc and a negative causal relationship between DA in vmPFC and
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DA in Nacc, in agreement with other results obtained with different stressors and
methods (Cabib et al., 2002; Deutch et al., 1990; Doherty andGratton, 1996;
Scornaiencki et al., 2009; Stevenson and Gratton, 2003; Ventura et al., 2002).

Table 3.1: List of key references supporting the connectivity of the model

DA targets in Nacc (Carr and Sesack, 2000)
DA targets in vmPFC (Briand et al., 2007)

(Margolis et al., 2006)
(Lammel et al., 2008)

NE targets in vmPFC (Glavin, 1985)
(Aston-Jones et al., 1999)

(Briand et al., 2007)
(Radley et al., 2008)

IL-PL relation (Coutureau and Killcross, 2003)
(Vertes, 2006)

vmPFC regulation of the VTA (Carr and Sesack, 2000)
vmPFC control over the Hyp/PAG/DR (Radley et al., 2009)

(Vertes, 2006)
vmPFC differential control over CeA and ITC in the Amg (Vidal-Gonzalez et al., 2006)

(Vertes, 2006)
(Peters et al., 2009)

the Hyp-DR channel towards the mescortical VTA (Geisler et al., 2007)
CeA control over the mesolimbic VTA (Wallace et al., 1992)

(Ahn and Phillips, 2002)
(Floresco et al., 2003)
(Grace et al., 2007)

OFC-ACC regulation of the LC (Aston Jones and Cohen, 2005)
CeA regulation of the LC (Berridge and Waterhouse, 2003)

(Curtis et al., 2002)

3.2.2 The biology behind the model

The explanation of the phenomena and target data presented in the previous sec-
tion called for the design and implementation of a system-level model involving a
rather large number of neural systems and two neuromodulators. Indeed, the ini-
tial analysis of the relevant neuroscientific literature suggested that the dynamics
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of NAcc DA and vmPFC NE/DA in stressing situations arise out of the inter-
action among several different brain areas rather than fromspecific processes
occurring in isolated areas.

Figure 3.2 shows the functional components of the model and the main re-
lationships among them. The detailed circuits of the model are shown in figure
3.3.

The appraisal of a stressful situation is based on the available information
about the external environment and the organism’s physiological and psycholog-
ical state (Folkman et al., 1986; Lazarus, 1993). Information about the stressful
condition has four different targets in the model. The first is the orbitofrontal
cortex (OFC) and the anterior cingulate cortex (ACC), involved in emotional ap-
praisal and stress perception (Pruessner et al., 2008). Thesecond is the vmPFC,
involved in the modulation of classic stress responses (Diorio et al., 1993; Radley
et al., 2006; Sullivan and Gratton, 2002; Tavares et al., 2009), based in particular
on its role in the performance of goal-directed behaviour and habitual response
regulation (Balleine and Dickinson, 1998; Coutureau and Killcross, 2003; Kill-
cross and Coutureau, 2003). The third is the central nucleusof amygdala (CeA),
which is involved in emotional and behavioural stress responses (Koob, 2009)
and is also responsible for the regulation of various neuromodulatory systems in
stressful conditions (Davis and Whalen, 2001). The fourth and last is a group of
brain areas classically associated with physiological andbehavioural (especially
innate) responses to stressors, namely the hypothalamus (Hyp), periaqueductal
gray (PAG), and dorsal raphe nucleus (DR; Herman et al. 2005;Keay and Ban-
dler 2001; Maier and Watkins 2005).

Convergent empirical evidence supports the idea that PL andIL cortices play
a key role in stress coping. First, it has been demonstrated that PL activa-
tion constrains, whereas IL activation facilitates, classic physiological stress re-
sponses (Diorio et al., 1993; Radley et al., 2006; Sullivan and Gratton, 2002;
Tavares et al., 2009). Second, PL and IL play opposite roles in fear reactions,
with PL enhancing and IL inhibiting them (Peters et al., 2009; Sotres-Bayon
and Quirk, 2010; Vidal-Gonzalez et al., 2006). Third, PL is involved in action-



3.2. Methods 47

outcome learning and goal-directed behaviour expression whereas IL is involved
in switching to a stimulus-response behavioural mode (Balleine and Dickinson,
1998; Coutureau and Killcross, 2003; Killcross and Coutureau, 2003). Finally,
IL and PL are richly interconnected and most of their opposing influences on be-
havioural and physiological responses involve these connections (Vertes, 2004,
2006). The model is based on the following hypotheses: PL plays a key role in
the expression of goal-directed behaviour after the primary appraisal and con-
trols input processing in various sub-cortical areas; PL-IL interplay contributes
in implementing the second appraisal which leads to the second phase; IL control
over PL and various sub-cortical areas during the second phase is responsible for
the shift to passive coping.

Stress-induced changes in DA levels within vmPFC and NAcc are mainly
caused by the ventral tegmental area (VTA) projecting cells(Abercrombie et al.,
1989; Barrot et al., 1999, 2000; Inglis and Moghaddam, 1999;Kalivas and Duffy,
1995). vmPFC and NAcc receive DA afferents from different populations of
VTA DA cells and these are controlled by different and largely independent cir-
cuits (Briand et al., 2007; Carr and Sesack, 2000; Lammel et al., 2008; Margolis
et al., 2006). In the model, these two different VTA populations (respectively
called mesocortical VTA -mcVTA- and mesolimbic VTA -mlVTA-, see figure
3.2), play a key role in the decoupled dynamics of vmPFC DA andNAcc DA
levels measured in the target experiments (see below). Stress-induced changes
of NAcc DA levels are slow and detectable by intracerebral microdialysis (Cabib
and Puglisi-Allegra 2011 for review), which suggests that they depend on tonic
or population firing of VTA dopaminergic neurons (Floresco et al., 2003; Grace
et al., 2007). VTA also receives afferents from the central nucleus of amygdala
(CeA): the inhibition of CeA, and hence of its inhibitory input to VTA, leads to
an increase of NAcc DA (Ahn and Phillips, 2003), suggesting that this input is
part of a double inhibition mechanism (cf. also Floresco et al. 2003; Grace et al.
2007). For these reasons, the model hypothesises that stressors increase NAcc
DA levels via a double inhibition mechanism involving CeA and driven by both
direct stimuli from the environment and a strong modulationfrom vmPFC. These
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Figure 3.2: Functional representation of the architecture of the model. This simplified representation shows the net

excitatory/inhibitory influence that each component has onthe target components, and not the nature of the specific

neural pathways connecting them. The text in the boxes indicates the main functional role that the components

contribute to implementing in the model with respect to the appraisal of stimuli and the consequent stress responses.

processes are functionally summarised in figure 3.2, which shows a global ex-
citatory effect of Amg activation on mlVTA activation and anexcitatory effect
exerted by vmPFC on Amg (the weak effect of PL on VTA is omittedfrom figure
3.2 for clarity; see figure 3.3 for the detailed circuits).

Stress promotes an increase in tonic NE levels in the vmPFC: this increment is
due to the vastly diffused efferences originating from the relatively small group
of cells of locus coeruleus (LC; Aston-Jones et al. 1999; Berridge and Water-
house 2003; Glavin 1985; Valentino and Van Bockstaele 2001). LC receives
strong convergent projections from the OFC and the ACC, which have been sug-
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gested to drive transitions between phasic and tonic modes in NE neurons to fit
the behavioral/cognitive states with environmental conditions (Aston Jones and
Cohen, 2005). LC activity is also modulated by CeA (Curtis etal., 2002) via
a significant innervation of the pericoerulear region (Berridge and Waterhouse,
2003) and through the excitatory corticotropin-releasinghormone (CRH; Bouret
et al. 2003; Jedema and Grace 2004; Van Bockstaele et al. 2001).

Tonic neuromodulator releases involve receptors that are differentially located
among the layers of the cortex, so that the same neuromodulator may differently
affect its target subregions depending on the receptors it activates. For example,
the NE has different effects on target cortical areas depending on its concen-
tration and on the distribution of alpha1 and alpha2 receptors (Arnsten, 2009;
Briand et al., 2007). Based on these possible differential effects that NE can
cause in different target areas, the model hypothesises that NE increases the ac-
tivation of the PL neural population connected to Amg and Hyp/PAG/DR (thus
increasing DA release in NAcc) and inhibits the activation of the PL neural pop-
ulation connected to VTA (see figure 3.3).

Cortical processes also influence how CeA contributes to regulating the acti-
vation of VTA dopaminergic neurons (Everitt et al., 2000, 1999; Jalabert et al.,
2009; Wallace et al., 1992). Specific connections between the PL and the IL,
and their different targets within CeA, support opposite modulation of CeA out-
put neurons by vmPFC: in particular, PL activation excites CeA output neu-
rons, whereas IL activation inhibits them through the activation of GABAergic-
neuron intercalated nuclei (ITC) of Amg (Peters et al., 2009; Vidal-Gonzalez
et al., 2006). Finally, PL and IL show significant differences in their efferent
connections towards Hyp, PAG, and DR: in the model these areas have been
considered together both for lack of data concerning their activity (in this spe-
cific kind of long lasting inescapable stress experiments) and also because they
tend to react with coherent timing (Keay and Bandler, 2001),also resulting in
similar effects on VTA dopaminergic release (Geisler et al., 2007). PL has a pre-
dominantly inhibitory effect on this combined area Hyp/PAG/DR (Radley et al.,
2009) diminishing its capacity to react to stressors and therefore the likelihood
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of affecting DA release. The model assumes that Hyp/PAG/DR affect the system
during the second phase, when the inhibitory effect of the PLceases: in partic-
ular, according to the model Hyp/PAG/DR target the mesocortical VTA system
and are responsible for the large increase in DA levels in vmPFC during the
second phase of the experiments (passive coping).

3.2.3 The dynamics of stress responses

The functioning of the model, in particular during the two phases of the target ex-
periments, is illustrated in figure 3.3. In the initial phaseof the experiment (figure
3.3a), the stressor leads to a strong activation of the PL andthis putatively cor-
responds to the implementation of an active coping/problemsolving behavioural
strategy. PL activation fosters high tonic cortical NE levels through excitation
of CeA inputs to LC, resulting in a general enhancement of arousal and the pro-
cesses supporting problem-solving and goal-directed behaviour (OFC/ACC con-
tribute to activate LC as they evaluate the situation as stressful). The activation
of the PL also constrains the levels of tonic cortical DA thatwould be caused
by Hyp/PAG/DR responses to stress via their influence on mcVTA. Via CeA, the
self-feeding circuit involving PL-Amg-LC is able to offsetthe endogenous ac-
tivity of GABAergic neurons within the mlVTA and their activation by vmPFC.
Eventually, this circuit results in the removal of the inhibition of a population of
mesoaccumbens DA neurons that leads to a high efflux of DA intoNacc, which
in turn is thought to energise the active coping response to stress.

The persistent input from the stressor, due to the failure ofactive coping at-
tempts (uncontrollability), in the model triggers a learning process which strength-
ens the inhibitory connections between the PL inter-neuronpopulation, activated
by the IL, and PL output neurons (see figure 3.3). This processis assumed to
correspond to the progressive inhibition, by IL, of all active behaviours that fail
to produce the desired outcome, i.e. the removal of stress. As a result of this
learning mechanism, the activity of PL output neurons slowly decreases, trig-
gering a cascade of processes that start the transition to passive-coping (second
phase).
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In particular, the progressive inhibition of PL by IL (figure3.3b) reduces PL
excitation of CeA and hence causes a return of vmPFC NE to pre-stress lev-
els. Moreover, it removes PL inhibition of Hyp/PAG/DR and these areas con-
sequently start to excite mcVTA, thus causing a significant increase in tonic
vmPFC DA. The enhanced activity of IL resulting from increased DA levels
speeds up the learning process within the vmPFC; moreover, it increases the ac-
tivity of the ITC, thereby further suppressing the activityof CeA. Furthermore,
inputs from IL excite GABAergic interneuron populations within the mlVTA,
which are no longer inhibited by the CeA. For this reason mesoaccumbens DA
neurons are strongly inhibited, which causes Nacc DA levelsto drop below base-
line (a condition which is known to correlate with a passive coping strategy).

3.2.4 The computational mechanisms used to implement the model

The need to build a system-level model, and at the same time tokeep the expla-
nation of the target phenomena at a reasonably simple level,led us to simplify
and abstract as many details as possible when not central forthe explanation of
the phenomena of interest.

The model was constrained at three main levels: its macro-architecture, the
functioning of its components and its overall functioning.The macro-architecture
of the model was fully constrained using relevant data from neuro-anatomy (see
table 3.1). The functioning of the model components and the effects produced
on them by the neuromodulators was constrained on the basis of biologically-
plausible dynamical equations; whereas the representation of the inescapable
stressor was simplified with a single input signal entering the model at the be-
ginning of the simulated experiment (i.e. after 20 minutes without any input) and
remaining stable for the rest of the time. With respect to itsoverall functioning,
the model was thus constrained by requiring it to reproduce the dynamics of DA
and NE in vmPFC, and the dynamic of DA in the Nacc, in the three different
conditions reported in Pascucci et al. (2007).

Due to the slow dynamics of the target data and the importanceof neural pop-
ulation dynamics, standard leaky neural units (Dayan and Abbott, 2001) were
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used as building blocks, so that the dynamics of each unit of the model repre-
sent the activity of a whole population of real neurons (e.g., measurable with a
mean field potential recording, Bojak et al. 2003, rather than with a single cell
recording):

τj · u̇j =− uj + bj +
∑

i

[wji · ai] (3.1)

aj =[tanh[uj]]
+

whereτj is the time constant of the unitj, uj andaj are respectively the action
potential and the activation of unitj, bj is the baseline activation of the unit,wji

is the synaptic strength of the connection between uniti and unitj (this can be
either excitatory or inhibitory),̇u is the derivative ofu in time, [x]+ is a function
returning its argument if this is positive and zero if it is negative, and tanh[x] is
the hyperbolic tangent function.

An important feature of the model is the simulation of the slow accumulation
and reuptake of the neuromodulators in the extrasynaptic space of target areas,
and the multiplicative/additive effects they have on such areas. The accumu-
lation and reuptake mechanisms of neuromodulators are simulated through the
following equation (one for each different target area):

τnk · lnk =− (thnk · tanh[lnk]) + ((1− dnk) · wnk · an) (3.2)

wherelnk represents the level of the neuromodulatorn in the extrasynaptic
space of the target areak, τnk is a time constant regulating the speed of the dy-
namics of this neuromodulator,wnk is the strength of the neuromodulatory con-
nections linking the unitan, which produces the neuromodulatorn, to the target
areak; thnk is then neuromodulator reuptake capacity of the target areak: this
implies that when the level of the neuromodulatorlnk drops below a threshold
representing the overall reuptake capacity of the system, the injection of the neu-
romodulator(wnk · an) and its reuptake(−thnk · tanh[lnk]) compensate andlnk
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First Phase, active coping

(a)

Second Phase, passive coping

(b)

Figure 3.3: Neural architecture of the model showing its components andsub-components (rounded square areas),

their neural assemblies (circles), and their connections (links). The size of circles and links respectively encode the

level of activity of neural assemblies and the strength of the signals transmitted between them during the first phase

(a) and second phase (b) of the experiment in the sham condition.

reaches an equilibrium (the higher the injection rate, the higher this equilibrium);
conversely, when it exceeds this threshold the level of the neuromodulator starts
to increase progressively (see Fellous and Linster 1998 foralternative ways of
modelling these phenomena).

To perform the simulated depletions, it is important to reproduce the slow
dynamics exhibited by the target neuromodulator observed in real experiments
(figure 3.1a-c ). Therefore, we introduced a slow dynamics affecting the variable
dnk in formula 3.2 (n is the neuromodulator,k is area targeted by the neuromodu-
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lator). In simulated sham ratsdnk was set to zero, so it did not alter the dynamics
of the neuromodulator. Instead, in experiments simulatingthe depletions of ei-
ther DA or NE in vmPFC this variable was set to a value in the range [0, 1] so
that the injection of the neuromodulator into the target area was suitably lowered.
In particular,dnk was regulated progressively towards the desired leveld′nk (set
to 1 at the moment of the depletion) according to the following equation:

τdnt · dnt =− dnt + d′nt (3.3)

The model also simulates theadditiveandmultiplicativeeffects that the neu-
romodulators produce on the target neuron populations (effects respectively based
on the passive channels K+, Na+, and Ca++, and the active channels AMPAR
and NDMAR: Fellous and Linster 1998). In this respect, the equation of formula
3.1 relative to the computation of the activation potentialuj of the model units
was modified as follows to reproduce the NE and DA effects:

τj · u̇j = −uj +
1 +

∑

[µelk · lk]

1 +
∑

[µdlk · lk]
· (bj +

∑

i

[wji · ai])+ (3.4)

+
∑

[αelk · lk]−
∑

[αdlk · lk]

where the coefficientsµelk andαelk respectively regulate themultiplicative
excitatoryandadditive excitatoryeffects of the neuromodulatorl on target area
k, whereas the coefficientsµdlk andαdlk respectively regulate themultiplica-
tive inhibitory and additive inhibitoryeffects of the neuromodulatorl on the
same area. Note that both the multiplicative and additive effects of the neu-
romodulators leave the signals unaltered if the level of theneuromodulators is
zero. Moreover, the multiplicative effects depend on the size of the local glu-
tammaergic/GABAergic signals, whereas the additive ones are independent of
them. It should also be noted that the same neuromodulator may have either
excitatory or depressive effects on different target areasdepending on the dis-
tribution of its specific receptors: for instance, in the model NE is assumed
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to have a multiplicative and additive excitatory effect on the vmPFC popula-
tion of neurons connected to the Amg (µeNEvmPFC > 0, αeNEvmPFC > 0,
µdNEvmPFC = 0, αdNEvmPFC = 0) and a multiplicative and additive depressive
effect on the vmPFC population of neurons connected to VTA (µeNEvmPFC = 0,
αeNEvmPFC = 0, µdNEvmPFC > 0, αdNEvmPFC < 0).

Finally, the Hebbian learning processes leading to the increase in the strength
of internal connections of vmPFC are implemented using the following learning
rule:

wji[t] = wji[t− 1] + η · [aj − thj]
+ · [ai − thi]

+ (3.5)

wherewji is the connection weight between uniti and unitj, η is a learning
rate, andthj andthi are the thresholds that the activations ofaj andai of the two
units have to overcome in order to trigger the learning process.

The model has been implemented in MatlabTM and the equationsof the
model were integrated with the Euler method with a time step of 10 secs. This
long time step afforded fast simulations and at the same timeresults that were
still accurate given the very slow dynamics of the target phenomena.

The parameters of the model were found using a non-linear regression method
where the data to fit were those collected by microdialysis and reported in fig-
ure 3.1a-c. The regression method used is based on a genetic algorithm that
searches the parameters to minimise the average quadratic error between these
data and those reproduced by the model. Genetic algorithms represent power-
ful non-linear regression methods that can be used with verycomplex non-linear
models, such as the one used here, where it is difficult or evenimpossible to an-
alytically derive the parameters of the model from the target data (Gulsen et al.,
1995; Kapanoglu et al., 2007; Vander Noot and Abrahams, 1998). An important
decision regarding the target data is whether to consider all the points of the time
series as equally important or to require different degreesof accuracy for differ-
ent sub-sets of data. In our case, the error related to the curves describing the DA
release in NAcc was considered particularly important, so we assigned a weight
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NE in vmPFC, simulated
data

(a)

DA in vmPFC, simulated
data

(b)

DA in NAcc, simulated data

(c)

Figure 3.4: Simulations of the releases of the neuromodulators -cortical NE (a), cortical DA (b) and mesolimbic

DA (c)- recorded in the three conditions. Note the stressingstimulus is presented to the system after 20 minutes of

time simulation, in order to reach a starting equilibrium point, given the basal activity of the neuromodulators.

of 10 to the error in them whereas all other data points were assigned a weight
of 1.

3.3 Results

3.3.1 Simulation of target data from microdialysis measurements

Figures 3.4a-c presents the dynamics of the neuromodulators produced by the
model with the parameters found by the genetic algorithm (shown in table A.2)
when it was used to simulate the sham, NE depleted, and DA depleted conditions
of the target experiment.

The comparison between real (figure 3.1a-c) and simulated (figure 3.4a-c)
data shows a substantial match, indicating that the assumptions and hypotheses
implemented in the model are computationally sound and sufficient to reproduce
the target phenomena. First, the model reproduces the main catecholamine dy-
namics in the sham condition: an initial high level of vmPFC NE followed by
a return to baseline; an initial moderate increase in vmPFC DA followed by an
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even higher increase; a consequent NAcc DA level that first rises above baseline
and then drops below it. Moreover, the model reproduces the main features of the
neuromodulator dynamics in the case of both NE or DA depletion in vmPFC: in
particular, the fact that cortical NE is necessary for the initial high level of NAcc
DA whereas cortical DA is necessary for NAcc DA to fall below baseline during
the second phase of the experiement.

Figures 3.5a-d show the activation of four units of the model(representing
neural populations) during the simulations of the three conditions of the exper-
iment: PL output population directed to Amg/VTA; CeA outputpopulation; IL
output population; and Hyp/PAG/DR output population. These activations help
to understand how, in the model, the brain areas corresponding to these compo-
nents act in concert to produce the catecholamine dynamics described above.
The sham condition shows that PL and Amg (figures 3.5c and 3.5a, respec-
tively) are mainly activated during the first phase of the test to support goal-
directed/problem solving processes underlying active coping. Even IL (figure
3.5d) has a relatively high activation during this phase. These processes cause,
and are supported by, a high level of vmPFC NE. The final outcome of all these
processes is the increase in NAcc DA. During the second phaseIL activity fur-
ther increases, which results in the inhibition of PL and CeAand in the activation
of Hyp/PAG/DR (figure 3.5b). These processes cause, and are supported by, a
high level of vmPFC DA. The final outcome of all these processes is the decrease
of DA NAcc below baseline.

The vmPFC NE depletion causes a loss of about 10% in the peak response
of PL in the first phase, and an anticipation of its decrease ofabout 20 mins
(figure 3.5c). This lower activity propagates to CeA (figure 3.5a), which is no
longer able to offset the inhibitory effects in the mlVTA caused by GABAergic
interneuron populations. This is the main reason why, in themodel, NE depletion
in vmPFC prevents NAcc DA from increasing during the first phase. At the same
time, PL lower activation slows down the IL-PL Hebbian learning processes
resulting in a slightly delayed increase in the activationsof IL (figure 3.5d) and
of Hyp/PAG/DR (figure 3.5b), which in turn result in a slightly delayed decrease
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below baseline of DA levels in NAcc.
The vmPFC DA depletion causes a major lower activation of theIL during the

whole test (figure 3.5d). This slows down the IL-PL learning processes and the
consequent decrease in PL output activation (figure 3.5c). The stronger and more
persistent activity of the PL supports a higher activation of CeA (figure 3.5a) and
again delays (even more than in the NE depletion condition) the activation of
Hyp/PAG/DR (figure 3.5b). The lower IL activity due to the depletion of vmPFC
DA prevents IL from having its inhibitory effect on mlVTA, and hence prevents
NAcc DA from dropping below baseline.

3.3.2 Predictions

The main hypothesis implemented by the model is that the fluctuations of cat-
echolamines in vmPFC and their role in the modulation of DA levels in NAcc
critically depend on the interactions between the PL and theIL. Our model,
which implements this hypothesis and which has been validated by reproduc-
ing the fluctuations of catecholamines observed in normal and lesioned animals,
can be used to derive a number of empirical predictions. In particular, we sim-
ulated lesions to four different connections by setting those connections to zero
(while leaving all other parameters of the model unchanged,i.e. as in table A.2):
PL-Amg, PL-VTA, IL-Amg, and IL-VTA. The resulting dynamicsof the NAcc
DA, which represent the predictions of the model, are reported in figures 3.6a-d,
where they are compared with the dynamics of NAcc DA in the sham condition.

The simulation of the lesion of PL-VTA connections reveals the importance
of the globally inhibitory effect that PL exerts on NAcc DA levels: when these
connections are removed, these levels are higher during both the first and the
second phase, although the above/below -baseline featuresof the NAcc DA does
not qualitatively change with respect to sham rats (figure 3.6a). The lesion of
PL-Amg connections produces more interesting effects: first, NAcc DA remains
at baseline during the first phase, and then decreases below baseline but after
a delay with respect to the sham rats (figure 3.6b). These dynamics, similar to
those obtained with the vmPFC NE depletion (figure 3.6c), reveal the significant
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CeA output

(a)

Hyp/PAG/DR output

(b)
PL output (toAmg and Hyp/PAG/DR)

(c)

IL output

(d)
Figure 3.5: Activities recorded in four different units of the model simulating the mean field neural activity of the

corresponding neural populations of the rat brain. Note that the basal release of DA and NE affects the activation

status of the cortices -graphs (c) and (d)- even before the stressing stimulus is presented (time 0), determining the

starting equilibrium which is then affected by the stressor.

influence that PL exerts on mlVTA via Amg, with the support of NE frontal lev-
els. The lesion of IL-VTA connections produces a significantincrease in NAcc
DA during the first phase and a baseline level in the second part of the simula-
tion, versus the below-baseline level of sham rats (figure 3.6c). These dynamics,
similar to those recorded after the vmPFC DA depletion (figure 3.6c), reveal the
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PL-VTA lesion: simulation

(a)

PL-Amg lesion: simulation

(b)
IL-VTA lesion: simulation

(c)

IL-Amg lesion: simulation

(d)
Figure 3.6: Four predictions suggested by the model. The mesolimbic DA release was recorded after lesioning the

model (blank square lines) and is compared with the known data characterising sham rats (filled circle lines). The

lesions affect efferent projections of either PL or IL and their targeted area in the VTA and the Amg.

key role that IL plays in controlling NAcc DA, with the support of frontal DA
levels. The lesion of IL-Amg connections causes NAcc DA to have the greatest
level of NAcc DA in the first phase, plus an above-baseline level even in the
second phase (figure 3.6d). This clarifies the key role that ILinhibition of Amg
plays in causing low levels of NAcc DA during passive coping.

These predictions may be falsified using combined contralateral lesions: for
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practical reasons, this technique aims at isolating two neural regions via asym-
metrical lesions of the areas, rather than directly involving the synapses bridging
the areas themselves. Further, the final result is widely considered as similar
and hence it can be used to test the present simulations, which have been carried
out setting to 0 the connections involved (e.g. see Coutureau et al. 2009 for a
PL-Amg lesion).



Chapter 4

Conclusions

This dissertation thesis presents a bio-constrained system-level model that repro-
duces and explains data obtained from experiments investigating catecholamine
releases in rats forced to cope with long-lasting, unavoidable/inescapable stress,
focussing on (1) how DA and NE levels in vmPFC control tonic levels of NAcc
DA (Pascucci et al., 2007) and (2) the cause for the differentNAcc DA release
when the animal is repeatedly exposed to restraint (Cabib and Puglisi-Allegra,
1996). The experiment showed that the initial response to the stressor is char-
acterized by an imbalance favouring NE over DA in vmPFC associated with
high tonic levels of DA in NAcc. This phase is followed by a shift of the im-
balance in favour of DA accompanied by a reduction of tonic NAcc DA below
pre-stress levels. The experiment also supports the existence of a causal relation-
ship between the cortical and the subcortical catecholaminergic concentrations
as selective depletion of cortical NE or DA respectively eliminates the first-phase
increase and the second phase decrease of NAcc DA.

The model proposes an explanation of the way in which the fluctuations in
tonic levels of brain catecholamines support stress appraisal (primary and sec-
ondary) and hence, putatively, the motivational states suitable for supporting
effective coping of novel stressors. In particular, the initial primary appraisal,
marked by high NE levels in vmPFC, is directed toward recognising and eval-
uating the threat posed by the stressor (with the involvement of OFC/ACC),
addressing it on the basis of reactive and goal-directed active-coping strategies
(with the involvement of vmPFC, in particular PL, and Amg). This is in agree-
ment with the general involvement of vmPFC with the control of hormonal and
behavioural stress responses based on the catecholaminergic regulations occur-
ring inside it (Cabib et al., 2002; Maier and Watkins, 2010; Scornaiencki et al.,
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2009). In this respect, the high levels of cortical tonic NE may drive not only the
general arousal of the system required to face the urgency ofthe situation (Aston-
Jones et al., 1999; Berridge and Waterhouse, 2003), but alsothe shift to an ex-
ploratory/problem solving mode of operation (Aston Jones and Cohen, 2005)
eventually triggered by the failure of the initial attemptsto terminate/escape
the stressing condition. At the same time, slightly above-baseline mesocorti-
cal dopamine levels in PFC might play an important adaptive role by preventing
excessive behavioural and physiological stress reactivity (Sullivan, 2004). The
high levels of NAcc DA resulting from the high activation of mlVTA, in turn
caused by the activation of PL and Amg involved in the elaboration of the ac-
tive coping strategy, possibly have the function of energising the preparation and
implementation of actions as suggested by experiments showing that high levels
of NAcc DA can support strenous and risky goal-directed responses (Salamone
et al. 2007 see also Niv et al. 2007, for a model).

A key hypothesis of the model is that the persistence of the stressor might
lead the IL to detect the failure of the active coping attempts and to progressively
(learn to) inhibit them through the inhibition of PL and Amg.This hypothesis
is consistent with the view that the extinction of no longer adaptive appetitive or
aversive behaviours involves learning processes that leadto actively inhibiting,
rather than forgetting, such behaviours (Quirk, 2002). Furthermore, it is consis-
tent with data ascribing to IL a key role in these inhibitory processes and with the
close neural interplay existing between IL and PL (Lebrón et al., 2004; Radley
et al., 2006, 2008; Rhodes and Killcross, 2004; Van Aerde et al., 2008). These
processes are suggested to lead to a shift to passive coping strategies based on
a broad readjustment of the catecholamine levels and brain activation distribu-
tion. First, NE in vmPFC returns to pre-stress levels thus possibly diminishing
arousal, attention to external events, goal-directed behaviours, and exploration of
new solutions. Second, high levels of DA in PFC might enhancethe processing
of internal information vs. external stimuli and strengthen cognitive persever-
ance and internal focus (Cohen et al., 2002). Lastly, NAcc DAlow levels pos-
sibly promote a decreased overt activity, in agreement withthe experiments in
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which inhibition of NAcc DA release can block this activity when the stressor is
appraised as uncontrollable/unavoidable (Baldo and Kelley, 2007; Phillips et al.,
2007; Ventura et al., 2002).

Genetic Algorithms have been used as regression tool to set the parame-
ters of this complex bio-constrained neural model. The firstchapter describes
why the use of the genetic algorithm for searching model parameters can help
the researcher not only in finding the set of parameters that optimise the corre-
spondence between the model behavior and the target data, but also in defining
the model architecture itself, hence defining the core hypotheses concerning the
function of the model.

The model included at least three different neural mechanisms working at
different time scales: electrical (activity of single units), chemical (dynamics
of the neuromodulators), and pertaining to long term potentiation (learning in
the vmPFC); the presence of these different types of neural interactions did not
prevent the GA from finding the optimal parameters that were able to replicate
the target data, it only resulted in an increase in the the time required for running
the evolutionary search.

It is important to stress that the overall methodology is very flexible, in that it
can be used for models that target any kind of empirical data.In the described
case study the target data were time series of data representing the concentrations
of different neuromodulators in different brain areas as measured by microdial-
yses in different conditions, but the same procedure (regression towards target
data using weighted fitness) can be employed using any kind ofquantitative tar-
get data, be they chemical, neural, or behavioral.

One important weakness of the proposed method is that the GAsrequires
choosing between several different sub-methods (mutation, crossover, selection
etc.), each of which has its own meta-parameters to be set (population, gener-
ations, ranges etc.). Since no clear and accepted rule is available for making
these decisions, the choice on the details of the genetic algorithm is rather arbi-
trary. This might seems to result in a switch of the problem offinding the correct
parameters from the ones of the model to the ones of the GA. In practice the sit-
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uation is much better than it appears. Indeed, even though itmight be difficult to
find the mostefficientcombination of methods and meta-parameters of the GA
in each specific case, it is quite easy to find a combination that is satisfyinglyef-
fective: indeed the main problem in this cases is that good solutionstake longer
to be found. In fact, as the case study shown here has demonstrated, even using
several default options of already-available software, like the Matlabc© GA tool
used here, can be enough for giving useful results.

Interestingly, the GAs have been used to set the parameters of the model so
that it could replicate the specific set of data described in Pascucci et al. (2007),
but the model also successfully replicates a different set coming from repeated
exposure to restraint (Cabib and Puglisi-Allegra, 1996). This time, the record-
ing only interested the DA release in the NAcc for 120 minutes, but the model
managed to simulate all the three standard dynamics (NE and DA in vmPFC and
DA in NAcc) for the whole 4 hours routine. This result is grounded on the as-
sumption that each time the agent is subjected to the stressor, it spontaneously
recovers at a certain pace: the daily repetition of the experiments results in accu-
mulating the learned inhibition within the vmPFC and therefore in blocking the
initial response. Eventually the model predict the repetition may also cause an
immediate switch to the described second phase of tonic release, characterised
by a depressive release of NAcc DA.

The model also produced four more predictions on the possible effects that
lesions of PL and IL efferents reaching VTA and Amg would cause on the NAcc
DA dynamics during restraint tests. In particular, a lesionof the PL-Amg con-
nections would prevent NAcc DA from going above baseline levels in the first
phase of the experiment; instead, a lesion of the IL-VTA connections would pre-
vent NAcc DA from dropping below baseline levels during the second phase of
the experiment. These predictions can be tested in experiments with real rats and
the results would either support or falsify the two core hypotheses of the model
for which (a) the stress-induced changes in tonic levels of vmPFC NE and DA
that drive the NAcc DA accumulation preferentially involvePL and IL respec-
tively, and (b) the main features of the dynamics itself is ultimately caused by
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the strengthening of the IL inhibition towards PL and Amg.
Another possible empirical investigation that could help solve some unre-

solved aspects of the model concerns the involvement of Hyp/PAG/DR in driving
the activation of mcVTA neurons during the passive coping phase. The relations
between these and the other areas of the model are still not fully clear as there
is little empirical evidence to narrow the targeted area in the VTA (i.e. there is
evidence concerning DR-VTA connections, see Geisler et al.2007, but not DR-
mcVTA connections). In fact, it was the failure of the GA in finding optimal
parameters for an early version of the model that led to the development of a
second model, highlighting the necessity of relying on thisspecific connectivity
bridging DR and mcVTA.

The comparison between the two models described in the case study exempli-
fies the process of (weak) falsification and validation of bio-constrained models
made possible by the use of the GAs. Despite the fact that the GA does not
search for the parameters through the whole parameter space, the guided search
performed is still helpful in understanding the computational capabilities and
limits characterising different models.

The fact that the first model lacks a specific signal reaching the VTA with
the correct timing depends on the architecture of the neuralsystem rather than
on its parameters. Such conclusion might of course have beenreached also by
setting parameters through hand-tuning, but this would have required a much
longer amount of time and the conclusion that an appropriateset of parameters
does not exist would have be much less certain. Indeed, the latter conclusion can
be demonstrated only after an exhaustive search in the parameter space which is
practically unfeasible with many parameters as the required computational time
grows exponentially with the number of parameters.

A possible way to shed more light on these issues, pursuing anin vivo process
of validation/falsification, is to measure the levels of cortical serotonin (5-HT)
during a restraint experiment: the increase of 5-HT during the second phase of
the experiment would be consistent with an active involvement of DR in the DA
regulations as hypothesised by the model. This outcome could also suggest the
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existence of possible interesting relations between the mechanisms underlying
stress coping and those underlying the outcomes of the experiments on learned
helplessness, closely linked to the 5-HT system (Amat et al., 2005; Maier and
Watkins, 2005, 2010).

The proposed model, which is the first computational integrated account of
the target phenomena, could be developed in various directions in future work.
First, it might be useful to investigate in greater detail the specific effects the
catecholamines have on the several parts and layers of the vmPFC, bringing
the model closer to the complexity of widespread projections of the real cat-
echolamine systems. This would allow the important interactions existing be-
tween multiple neuromodulators targeting the same areas tobe studied, in par-
ticular the frontal cortex (Briand et al., 2007). Second, itmight be interesting to
investigate the role played by the opioid system in stress coping as opioids have
been shown to be involved in VTA regulation of vmPFC DA levels(Svingos
et al., 2001). Finally, the hypotheses regarding the putative functional adaptive
role of the various components, neuromodulators and processes of the model
could be investigated in greater depth by implementing the details of the neural
processes taking place in PL, IL, Amg, OFC-ACC, Hyp/PAG/DR.For example,
the effects of NE and DA on goal-directed behaviour could be studied by im-
plementing neural decision making mechanisms in PL (Gurneyet al., 2001), the
progressive inhibition of IL on PL might be further specifiedby implementing
a neural action-failure detection mechanism within IL (Alexander and Brown,
2010), and the role of NAcc DA in energizing behaviour might be studied in
greater depth by implementing a NAcc actually contributingto perform a simu-
lated behaviour. An ”embodied” set-up, cf. Caligiore et al.2010; Niv et al. 2007,
could target experiments involving overt behaviour, e.g. aforced swimming test
(Porsolt et al., 1977), possibly refining the model so as to produce more accurate
predictions regarding the role played by NE, DA (and possibly 5-HT) in vmPFC
and DA in NAcc and their correlation with the expression of overt and covert
reactions to stress.
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Tables

Table A.1: All the acronyms used in this dissertation.

Neuromodulators
DA Dopamine
GABA Gamma-aminobutyric acid
Glu Glutamate
NE Noradrenaline/norepinephrine
5-HT serotonin
Brain Areas
Amg Amygdala

CeA Central nucleus of amygdala
ITC Intercalated amygdaloid nuclei

DR Dorsal raphe nucleus
Hyp Hypothalamus
LC Locus coeruleus
NAcc Nucleus accumbens
OFC Orbitofrontal cortex
PAG Periaqueductal gray
PFC Prefrontal cortex

vmPFC Ventromedial prefrontal cortex
IL Infralimbic cortex
PL Prelimbic Cortex

VTA Ventral tegmental area
mcVTA meso-cortical ventral tegmental area
mlVTA meso-limbic ventral tegmental area
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Table A.2: Values found using GAs: parameters not specified have been set to 1; ”inp”, ”int” and ”out” respectively

stand for input, interneuron and output population of a neural area.

GLU (+) and GABA (-) connections
Efferent Afferent Value
CeA LC 0.3042
CeA mlVTA-int1 -5
CeA mlVTA-int2 -4.9267
Hyp/PAG/DR mcVTA 0.6976
Hyp/PAG/DR-inp Hyp/PAG/DR-out 1.4694
Hyp/PAG/DR-int Hyp/PAG/DR-inp -4.8477
IL ITC 4.4910
IL mcVTA 0.3541
IL mlVTA-int1 3.9190
IL mlVTA-int2 3.2051
Input IL 0.4859
Input OFC/ACC 0.5
ITC CeA -3.4307
mcVTA-int mcVTA-output -3.3512
mcVTA-output mcVTA-input 1.6193
mlVTA-int1 mlVTA-output -1.2221
mlVTA-int1 MlVTA-int2 -2.3243
mlVTA-int2 mlVTA-output -1.5046
PL CeA 3.8170
PL mcVTA 0.2
PL mlVTA-int1 2.6646
PL mlVTA-int2 0.2
Neuromodulators: additive effects
DA in PFC 0.3439
NE in PFC 0.3339
Neuromodulators: multiplicative effects
DA in PFC 1
NE in PFC 1
Neuromodulators: baselines
mcVTA-output baseline 1.9634
mlVTA-output baseline 1.7
mlVTA-int1 baseline 2
Leaky decays
Neural units 30000
Neuromodulator accumulation 300000
Depletion decays
Depletion decay of DA 3633600
Depletion decay of NE 1196480
Other parameters
LC threshold 0.5
Learning rate in vmPFC 0.0064
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