

From structures to functions

1 – Static Networks

2 – Dynamic Networks

Elements of graph theory

Ordered network

- 12 nodes
- 24 connections
- average connectivity: 2
- longest path: 6

Random network

- 12 nodes
- 24 connections
- average connectivity: 2
- longest path: 7

Elements of graph theory

Ordered network

- 12 nodes
- 48 connections
- average connectivity: 4
- longest path: 3

Small world network

- 12 nodes
- 32 connections
- average connectivity: 2.6
- longest path: 3

Elements of graph theory

Scale-free network

- 12 nodes (2 hubs)
- 22 connections
- average connectivity: 1.8
- longest path: 3

Oriented graph

- 12 nodes
- 12 connections
- average connectivity: 1
- longest path: --

Parallel Distributed Processing (PDP), elements:

- Environment encoded into numerical input.
- Pattern of afferent connectivity, propagation rules.
- Internal computation (transfer function) resulting in activation states.
- Decoded output.

Output: 2 categories

- Input: one dimension environment.
- Processing units (neurons): one
- Connectivity: one afferent, one efferent.
- Activation rule: threshold.

Output: 2 categories

- Input: two dimension environment.
- Processing units (neurons): one
- Connectivity: two afferent, one efferent.
- Activation rule: threshold.

Output: 2 categories

- Input: two dimension environment.
- Processing units (neurons): one
- Connectivity: two afferent, two efferent.
- Activation rule: threshold.

Output: 4 categories

- y₁=0, y₂=0, - y₁=1, y₂=0, - y₁=0, y₂=1,

- Input: two dimension environment.
- Processing units (neurons): two
- Connectivity: four afferent, two efferent.
- Activation rule: threshold.

PDP, step 2: multilayer

PDP, elements:

- Environment encoded into numerical input.
- Pattern of afferent connectivity, propagation rules.
- Internal computation (transfer function) resulting in activation states.
- Sequential processing: the output of one layer becomes the input for another downstream layer.
- Decoded output.

PDP, step 2: multilayer

Output: 2 categories

Feed-forward multilayer network

- Input: two dimension environment.
- Processing units (neurons): three.
- Connectivity: four afferent, two efferent (Layer 1), two afferent, one efferent (Layer 2).
- Activation rule: threshold.

PDP, step 3: time component

Output: encodes strength and duration of signal

- y₁=0 - 0< y₁<1 - y₁=1

- Input: one dimension environment.
- Processing units (neurons): one
- Connectivity: one afferent, one efferent.
- Activation rule: leaky integrator.

PDP, step 3: time component

Output: encodes strength and duration of signal

- y₁=0 - 0< y₁<1 - y₁=1

- Input: two dimension environment.
- Processing units (neurons): one
- Connectivity: two afferent, one efferent.
- Activation rule: leaky integrator.

PDP, step 3: time component

PDP, step 4: lateral and feedback connectivity

Function realised: Onset detector

PDP, step 4: lateral and feedback connectivity

PDP, step 5: stability, attractors and memory

Image from: Kanamaru T, Fujii H, Aihara K - PLoS ONE (2013)

PDP, step 5: stability, attractors and memory

Function realised: Maintenance

PDP, step 5: stability, attractors and memory

PDP, step 6: pattern generators

Function realised: Pattern generator

What kind of dynamics can we expect from this?

From structures to functions

1 – Static Networks

2 – Dynamic Networks

PDP, step 7: learning

Different sensory stimuli activate different units

Completion: after learning, the system recognises incomplete features to associate the sensory stimulus to a known category.

PDP, step 7: (unsupervised) learning

Target neural activity:

PDP, step 7: (unsupervised) learning

Actual neural activity:

n1

Completely interconnected neural network: why?

PDP, step 7: (unsupervised) learning

Undesired maintenance and memory effect!

How do we suppress undesired maintenance?

Nodes activated by the sensory input

 $\overline{}$

f(x) **X**₁ **X** *f*(x) **X**₂ X **f**(x) **X**₃ How do we suppress

undesired maintenance? A possible solution grounded on inhibitions.

Interference: after learning, the system must suppress conflicting stimuli to associate the sensory stimulus to a known category.

Nodes activatedby the sensory input

PDP, step 7: (unsupervised) learning

Target neural activity:

PDP, step 7: (unsupervised) learning

Actual neural activity:

n1

Undesired learning: Oranges and kiwis now belong (again!) to the same category

Interference: after learning, the system must suppress conflicting stimuli to associate the sensory stimulus to a known category.

The three Hebbian learning rules in auto associative networks:

- **1** Hebb: $\Delta w_{ij} = (y_i)(y_j)$
- 2 Post-synaptic $\Delta w_{ij} = (y_i)(2y_j 1)$
- **3** Pre synaptic $\Delta w_{ij} = (2y_i 1)(y_j)$

Generally considered valid for the paleocortex (e.g. hippocampus)

The four Hebbian learning rules in auto associative networks:

- 1 Hebb: L
- 2 Post-synaptic
- 3 Pre synaptic

$$\Delta w_{ij} = (y_i)(y_j)$$

$$\Delta w_{ij} = (y_i)(2y_j - 1)$$

$$\Delta w_{ij} = (2y_i - 1)(y_j)$$

$$\Delta w_{ij} = (2y_i - 1)(2y_j - 1)$$

Hopfield rule increases synaptic strength if pre- and post- synaptic units are inactive together.

The role of dopamine:

- reward signal (shift is caused by CS-R association).
- prediction error (shift is caused by prediction).
- novelty signal (shift is caused R becoming expected and CS unexpected).
- signal of intrinsic/extrinsic motivation (shift is caused by CS-R association).

Image from: Schultz W., Dayan P., Montague R. R. A (1997) Science.

Dopamine dependent Hebbian learning:

- **1**-Hebb: $\Delta w_{ij} = (y_i)(y_j)(da-th)$
- 2 Post-synaptic
- 3 Pre synaptic

$$\Delta w_{ij} = (y_i)(2y_j - 1)(da - th)$$

$$\Delta w_{ij} = (2y_i - 1)(y_j)(da - th)$$

PDP, step 8: neuromodulation

Standard leaky integrator

$$\tau_{g} \dot{u}_{j} = -u_{j} + b_{j} + \sum w_{ji} y_{i}$$
$$y_{j} = [\tanh(u_{j} - \theta)]^{+}$$
$$\tau_{g} \dot{u}_{j} = -u_{j} + b_{j} + (\varepsilon + \lambda d) \sum w_{ij} y_{i}$$
$$y_{j} = [\tanh(u_{j} - \theta)]^{+}$$

Modified leaky integrator (d=dopamine release)

DA

Functions implemented:

- sustained selection (attractors)
- noise suppression
- modulated by dopamine (e.g. Parkinson)

Structural features: - dominance of GABA

Solution: competition via lateral inhibitions

Functions implemented:

- sustained selection (attractors)
- noise suppression
- modulated by dopamine (e.g. Parkinson)

Structural features: - dominance of GABA

Solution: competition via lateral inhibitions

Functions implemented:

- sustained selection (attractors)

- noise suppression

- modulated by dopamine (e.g. Parkinson)

Structural features: - dominance of GABA (efferent)

Solution: Competing pathways.

Functions implemented:

- sustained selection (attractors)
- noise suppression
- modulated by dopamine (e.g. Parkinson)

Structural features: - dominance of GABA (efferent)

Solution: Competing pathways.

Images from: wikimedia commons, Basal Ganglia

Functions implemented:

- sustained selection (attractors)
- noise suppression
- modulated by dopamine (e.g. Parkinson)

Structural features:

- dominance of GABA (efferent)

Solution:

...slighlty more complex.

