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1) Belief updating: a Bayesian perspective

- A world of probabilities

- Conditional and independent probabilities 

- How to assign probabilities to an hypothesis: an example

- From priors to posteriors, to new priors and again new posteriors

2) Modelling behaviour: a comparison

- RL approach: expected values, rewards, prediction error, value updates

- Bayesian approach: inference, probabilities, evidence and belief updates

3) Model Based fMRI

- Prediction error example

- Uncertainty example
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Part I: A world of probabilities
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Part I: A world of probabilities
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Part I: A world of probabilities

25%? 75%?
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Was the street also wet?

Are sprinkles usually working at 

this time of the day?

Is rain likely in this time of the 

year?

Bayesian Inference!
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Part I: Conditional and independent probabilities

Bayes’ theorem:

𝑃(𝐻|𝐷) =
P(D|H) P(H)

P(D)
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Part I: Conditional and independent probabilities

Bayes’ theorem:

𝑃(𝐻|𝐷) =
P(D|H) P(H)

P(D)

}

Conditional Probability of 

hypothesis (H) to be true, 

given the data (D).

}

Conditional Probability of 

data (D) to occur, if the 

hypothesis (H) is correct.
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Part I: Conditional and independent probabilities

Bayes’ theorem:

𝑃(𝐻|𝐷) =
P(D|H) P(H)

P(D)

}

Conditional Probability of 

hypothesis (H) to be true, 

given the data (D).

Conditional Probability of 

data (D) to occur, if the 

hypothesis (H) is correct.}
Independent Probability to 

observe the data (D), in the 

environment.

}

Independent Probability 

to observe the hypothesis 

(H), in the environment.

}
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Part I: example

1. Experiment: establish from which jar the 

coloured bead is extracted from.

2. Evidence (data): the extracted coloured beads.

3. Hypothesis: the bead comes from the Blue jar, 

or any Red jar (2 hypotheses).

?
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Part I: example

?

1. Experiment: establish from which jar the 

coloured bead is extracted from.

2. Evidence (data): the extracted coloured beads.

3. Hypothesis: the bead comes from the Blue jar, 

or any Red jar (2 hypotheses).

4. Prior probability: the distribution of probability, prior to collecting evidence.

P(𝐵𝑗) = 
1

3
P(𝑅𝑗) = 

2

3
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Part I: example

?

1. Experiment: establish from which jar the 

coloured bead is extracted from.

2. Evidence (data): the extracted coloured beads.

3. Hypothesis: the bead comes from the Blue jar, 

or any Red jar (2 hypotheses).

4. Prior probability: the distribution of probability, prior to collecting evidence.

P(𝐵𝑗) = 
1

3
P(𝑅𝑗) = 

2

3

5. Likelihood: the probability of the data (bead extracted=blue), assuming each 

hypothesis is correct.

P(b|𝐵𝑗)=0.8 P(b|𝑅𝑗)=0.1
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Part I: example

?

1. Experiment: establish from which jar the 

coloured bead is extracted from.

2. Evidence (data): the extracted coloured beads.

3. Hypothesis: the bead comes from the Blue jar, 

or any Red jar (2 hypotheses).

4. Prior probability: the distribution of probability, prior to collecting evidence.

P(𝐵𝑗) = 
1

3
P(𝑅𝑗) = 

2

3

5. Likelihood: the probability of the data (bead extracted=blue), assuming each 

hypothesis is correct.

P(b|𝐵𝑗)=0.8 P(b|𝑅𝑗)=0.1

6. Posterior probability: the probability of each hypothesis, given the data

(bead extracted=blue).

P(𝐵𝑗 |b)=? P(𝑅𝑗 |b)=?
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Part I: example

?

1

3

2

3

𝐵𝑗 𝑅𝑗

0.8 0.1 0.1 0.1 0.1 0.8

4. Prior probability: the distribution of probability, prior to collecting evidence.

P(𝐵𝑗) =
1

3
P(𝑅𝑗) = 

2

3

5. Likelihood: the probability of the data (bead extracted=blue), assuming each 

hypothesis is correct.

P(b|𝐵𝑗)=0.8 P(b|𝑅𝑗)=0.1

6. Posterior probability: the probability of each hypothesis, given the data 

(bead extracted=blue).

P(𝐵𝑗 |b)=? P(𝑅𝑗 |b)=?
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Part I: example

?

1

3

2

3

𝐵𝑗 𝑅𝑗

0.8 0.1 0.1 0.1 0.1 0.8

6. Posterior probability: the probability of each hypothesis, given the data 

(bead extracted=blue).

P(𝐵𝑗 |b) = 
P(b|𝐵𝑗)P(𝐵𝑗)

P(b)
= 

0.8 ∙ 0.33

(0.8 ∙ 0.33 + 0.1 ∙ 0.66)
= 0.8

P(𝑅𝑗 |b) = 
P(b|𝑅𝑗)P(𝑅𝑗)

P(b)
= 

0.1 ∙ 0.66

(0.8 ∙ 0.33 + 0.1 ∙ 0.66)
= 0.2
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Part I: example

?

1

3

2

3

𝐵𝑗 𝑅𝑗

0.8 0.1 0.1 0.1 0.1 0.8

6. Posterior probability: the probability of each hypothesis, given the data 

(bead extracted=blue).

P(𝐵𝑗 |b) = 
P(b|𝐵𝑗)P(𝐵𝑗)

P(b)
= 

0.8 ∙ 0.33

(0.8 ∙ 0.33 + 0.1 ∙ 0.66)
= 0.8

P(𝑅𝑗 |b) = 
P(b|𝑅𝑗)P(𝑅𝑗)

P(b)
= 

0.1 ∙ 0.66

(0.8 ∙ 0.33 + 0.1 ∙ 0.66)
= 0.2
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Part I: example

?

1

3

2

3

𝐵𝑗 𝑅𝑗

0.8 0.1 0.1 0.1 0.1 0.8

6. Posterior probability: the probability of each hypothesis, given the data 

(beads extracted=blue+blue).

P(𝐵𝑗 |b) = 
P(b|𝐵𝑗)P(𝐵𝑗)

P(b)
= 

0.8 ∙ 𝟎.𝟖

(0.8 ∙ 𝟎.𝟖 + 0.1 ∙ 𝟎.𝟐)
= 0.97

P(𝑅𝑗 |b) = 
P(b|𝑅𝑗)P(𝑅𝑗)

P(b)
= 

0.1 ∙ 𝟎.𝟐

(0.8 ∙ 𝟎.𝟖 + 0.1 ∙ 𝟎.𝟐)
= 0.03

If extracted from the same 

jar as before…

…priors must be updated!
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Part I: example

?

1

3

2

3

𝐵𝑗 𝑅𝑗

0.8 0.1 0.1 0.1 0.1 0.8

6. Posterior probability: the probability of each hypothesis, given the data 

(beads extracted=blue+blue+red).

P(𝐵𝑗 |r) = 
P(r|𝐵𝑗)P(𝐵𝑗)

P(r)
= 

0.1 ∙ 𝟎.𝟗𝟕

(0.1 ∙ 𝟎.𝟗𝟕 + 0.8 ∙ 𝟎.𝟎𝟑)
= 0.8

P(𝑅𝑗 |r) = 
P(r|𝑅𝑗)P(𝑅𝑗)

P(r)
= 

0.8 ∙ 𝟎.𝟎𝟑

(0.1 ∙ 𝟎.𝟗𝟕 + 0.8 ∙ 𝟎.𝟎𝟑)
= 0.2

If extracted from the same 

jar as before…

…priors must be updated!
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Part I: example

?

1

3

2

3

𝐵𝑗 𝑅𝑗

0.8 0.1 0.1 0.1 0.1 0.8

6. Posterior probability: the probability of each hypothesis, given the data 

(beads extracted=blue+blue+red+green).

P(𝐵𝑗 |g) = 
P(g|𝐵𝑗)P(𝐵𝑗)

P(g)
= 

0.1 ∙ 𝟎.𝟖

(0.1 ∙ 𝟎.𝟖 + 0.1 ∙ 𝟎.𝟐)
= 0.8

P(𝑅𝑗 |g) = 
P(r|𝑅𝑗)P(𝑅𝑗)

P(g)
= 

0.1 ∙ 𝟎.𝟐

(0.1 ∙ 𝟎.𝟖 + 0.1 ∙ 𝟎.𝟐)
= 0.2

If extracted from the same 

jar as before…

…priors must be updated!
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Part I: example

?

1

3

2

3

𝐵𝑗 𝑅𝑗

0.8 0.1 0.1 0.1 0.1 0.8

6. Posterior probability: the probability of each hypothesis, given the data 

(beads extracted=blue+blue+red+green).

P(𝐵𝑗 |g) = 
P(g|𝐵𝑗)P(𝐵𝑗)

P(g)
= 

0.1 ∙ 𝟎.𝟖

(0.1 ∙ 𝟎.𝟖 + 0.1 ∙ 𝟎.𝟐)
= 0.8

P(𝑅𝑗 |g) = 
P(r|𝑅𝑗)P(𝑅𝑗)

P(g)
= 

0.1 ∙ 𝟎.𝟐

(0.1 ∙ 𝟎.𝟖 + 0.1 ∙ 𝟎.𝟐)
= 0.2

Data can be

meaningless!

}



• Biological agents continuously collect information from 

the environment to form and update their own beliefs.

• In Bayesian terms, beliefs are organized as distribution of 

probabilities.

• These distributions can be estimated using Bayes’ 

theorem, assuming:

– optimal behaviour, relative to the objectives and the information 

available. 

– Probability distributions for all events in the environment are 

known… or guessed?

Part I Summary
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Part II: modelling principles in action

A two armed bandit example

1. RL approach: expected values, rewards, prediction error, value 

updates

2. Bayesian approach: inference, probabilities, evidence and belief 

updates
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Part II: modelling principles in action

The multi armed bandit
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Part II: modelling principles in action

The multi armed bandit

State 1: two actions available
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Part II: modelling principles in action

The multi armed bandit

State 1: two actions available

The agent selects one action

S
ta

te
 1

ac
ti

o
n
 1

  
  

-
ac

ti
o
n
 2



MSSM / Computational Psychiatry introduction course / July 28, 2019 26

Part II: modelling principles in action

The multi armed bandit

State 1: two actions available

The agent selects one action

State 2: stochastic reward

R2: -100 points

R1: +100 points
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25%

75%
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Part II: modelling principles in action

The multi armed bandit

State 1: two actions available

The agent selects one action

State 2: stochastic reward

R2: -100 points

R1: +100 points

75%

S
ta

te
 1

ac
ti

o
n
 1

  
  

-
ac

ti
o
n
 2

25%

75%

Classic reward configuration,

perfect for RL model
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Part II: modelling principles in action

The multi armed bandit

State 1: two actions available

The agent selects one action

State 2: stochastic reward

Unconventional reward configuration:

R1: high positive outcome

R2: low positive outcome

R3: low negative outcome

R4: high negative outcome

R3: -50 points

R1: 100 points

S
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 1
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n
 1
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n
 2

25%

75%

R2: 50 points

R4: -100 points
75%
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Part II: modelling principles in action
S

ta
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 1
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25%

75%

75%

𝑄𝑎𝑡+1 = 𝑄𝑎𝑡 + 𝛼 𝑟𝑡 − 𝑄𝑎𝑡}

Updated value for 

the selected action

Old value for the 

selected action

} }

Prediction error 

(reward – old value)

Trial n Q value

Action 1

reward

1 0 100

2 50 100

3 75 -50

4 12.5 100

5 56.25 50

6 53.12 -100

7 -23.43 -100

8 -61.71 -100

9 -80.85 -50

10 -65.42

Expected value optimal choice: 62.5

Expected value suboptimal choice: -62.5

R3: -50 points

R1: 100 points

R2: 50 points

R4: -100 points
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Part II: modelling principles in action

Trial n Q value

Action 1

reward

1 0 100

2 50 100

3 75 -50

4 12.5 100

5 56.25 50

6 53.12 -100

7 -23.43 -100

8 -61.71 -100

9 -80.85 -50

10 -65.42

Expected value optimal choice: 62.5

Expected value suboptimal choice: -62.5

The free parameters regulate the behaviour 

of the artificial agent.

To describe the behaviour of actual participants, 

we explore which values for the free parameters

best fit their behaviour.

E.g. in the example, α = 0.5

𝑄𝑎𝑡+1 = 𝑄𝑎𝑡 + 𝛼 𝑟𝑡 − 𝑄𝑎𝑡

Learning rate

}
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Part II: modelling principles in action
S
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75%

75%

If the structure of reward is known.

this is sufficient evidence to change 

policy, immediately.

Expected value optimal choice: 62.5

Expected value suboptimal choice: -62.5

Trial n Q value

Action 1

reward

1 0 100

2 50 100

3 75 -50

4 12.5 100

5 56.25 50

6 53.12 -100

7 -23.43 -100

8 -61.71 -100

9 -80.85 -50

10 -65.42

R3: -50 points

R1: 100 points

R2: 50 points

R4: -100 points
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Part II: modelling principles in action

Data is unequivocal, so the probability distribution 

is immediately updated to 100% vs 0%

Trial n Bayesian 

update

reward

1 0.5 100 (𝑅1)

2 1 100(𝑅1)

3 1 -50(𝑅1)

4 1 100(𝑅1)

5 1 50(𝑅2)

6 0 -100(𝑅2)

7 0 -100(𝑅2)

8 0 -100(𝑅2)

9 0 -50(𝑅1)

10 1

1

2

1

2

𝐴1 𝐴2

R1 R2

1 0 0 1

R1 R2

𝑃 𝐴1 𝑅1 =
𝑃(𝑅1|𝐴1) P(𝐴1)

P(𝑅1)

=
1 ∙ 0.5

(1 ∙ 0.5 +0 ∙ 0.5)
= 1
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Part II: modelling principles in action

Data is unequivocal, so the probability distribution 

is immediately updated to 100% vs 0%

Trial n Bayesian 

update

reward

1 0.5 100 (𝑅1)

2 1 100(𝑅1)

3 1 -50(𝑅1)

4 1 100(𝑅1)

5 1 50(𝑅2)

6 0 -100(𝑅2)

7 0 -100(𝑅2)

8 0 -100(𝑅2)

9 0 -50(𝑅1)

10 1

1

2

1

2

𝐴1 𝐴2

R1 R2

0 1 1 0

R1 R2

𝑃 𝐴1 𝑅2 =
𝑃(𝑅2|𝐴1) P(𝐴1)

P(𝑅2)

=
1 ∙ 0.5

(1 ∙ 0.5 +0 ∙ 0.5)
= 1
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Part II: modelling principles in action

Data is unequivocal, so the probability distribution 

is immediately updated to 100% vs 0%

Trial n Bayesian 

update

reward

1 0.5 100 (𝑅1)

2 1 100(𝑅1)

3 1 -50(𝑅1)

4 1 100(𝑅1)

5 1 50(𝑅2)

6 0 -100(𝑅2)

7 0 -100(𝑅2)

8 0 -100(𝑅2)

9 0 -50(𝑅1)

10 1

1

2

1

2

𝐴1 𝐴2

R1 R2

0 1 1 0

R1 R2

𝑃 𝐴1 𝑅2 =
𝑃(𝑅2|𝐴1) P(𝐴1)

P(𝑅2)

=
1 ∙ 0.5

(1 ∙ 0.5 +0 ∙ 0.5)
= 1

𝑷 𝑹𝟏 𝑨𝟏 = 0
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1

2

1

2

𝐴1 𝐴2

R1 R2

1 0 0 1

R1 R2

1

3

2

3

𝐵𝑗 𝑅𝑗

?

0.8 0.1 0.1 0.1 0.1 0.8

Part II: modelling principles in action
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Part II: modelling principles in action

1

2

1

2

𝐴1 𝐴2

R1 R2

1 0 0 1

R1 R2

1

3

2

3

𝐵𝑗 𝑅𝑗

?

0.8 0.1 0.1 0.1 0.1 0.8

What if these probability distributions are not known?

(i.e. real world scenario)
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Part II: modelling principles in action

𝐴1 𝐴2

R1 R2

1 0 0 1

R1 R2

𝐵𝑗 𝑅𝑗

0.8 0.1 0.1 0.1 0.1 0.8

Bayesian modelling usually assumes

that the beliefs of biological agents

are normally distributed.

Thus, subjects differ depending on

their assumptions about how the

events are distributed (i.e. values for

the standard deviation, σ).

What if these probability distributions are not known?

(i.e. real world scenario)
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Part II: modelling principles in action

𝐴1 𝐴2

R1 R2

1 0 0 1

R1 R2

𝐵𝑗 𝑅𝑗

0.8 0.1 0.1 0.1 0.1 0.8

The lower the σ, the higher the “precision”.
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Part II: modelling principles in action

𝐴1 𝐴2

R1 R2

1 0 0 1

R1 R2

𝐵𝑗 𝑅𝑗

0.8 0.1 0.1 0.1 0.1 0.8

Probability density function

The lower the σ, the higher the “precision”.
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Part II: modelling principles in action

𝐴1 𝐴2

R1 R2

1 0 0 1

R1 R2

𝐵𝑗 𝑅𝑗

0.8 0.1 0.1 0.1 0.1 0.8

Probability density function Cumulative distribution function

The lower the σ, the higher the “precision”.

The higher the “precision”, the faster the update 

(akin high values for the learning rate, with a twist!).
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Part II: modelling principles in action

Probability density function Cumulative distribution function



Hunting for chimeras: space of parameters, optimal values, research methods.

α/σ

error

Part II: modelling principles in action

𝑄𝑎𝑡+1 = 𝑄𝑎𝑡 + 𝛼 𝑟𝑡 − 𝑄𝑎𝑡



• Both RL and Bayesian models attempt to establish a 

mechanism to “solve” the given problem and find an 

optimal behaviour that would maximise the given 

objective.

• The behaviour expressed by the model is then tuned to the 

specific choice selections of each participant, establishing 

their update pace, on the basis of subject-specific 

parameters.

• Different environments pose different challenges to the 

same models, making some constructs more or less likely 

to fit the behaviour of the biological agents.

Part II Summary
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Part III: model based fMRI

1. Contrast based analysis

2. RL approach: expected values, rewards, prediction error, value 

updates

3. Bayesian approach: inference, probabilities, evidence and belief 

updates



Trials

Choices
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Example: Contrast analysis

100 100 -50 100 100 100 50 -100 -50 100 100 -50 100Rewards:



Trials

Choices
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Example: Contrast analysis

100 100 -50 100 100 100 50 -100 -50 100 100 -50 100Rewards:



Trials

Choices
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Example: Prediction Error as parametric modulator

100 50 -125 88 44 22 -49 -169 -50 125 38 -112 94

Prediction

Error:
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Example: Confidence as parametric modulator

Trials

Parametric 

modulator

Trials

Choices

0.3 0.4 0.7 0.7 0.8 0.9 0.8 0.4 0.6 0.7 0.7 0.7 0.7Confidence:
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X = 18 Y = 24

Z = 2

Finder Keeper

Prediction error signal Uncertainty signal

X = 18 Y = 24

Z = 2



• Different models address different questions. However, 

models can systematically fail in replicating a behaviour 

making any analysis based on them, meaningless.

• Model-based fMRI consists in estimating weights related 

to cognitive processes, associated (frequently) with a 

choice behaviour. These weights are then applied to the 

fMRI signal on a trial-by-trial basis, avoiding reduced 

sampling and arbitrary trial selections.

• The weights are subject-specific: the model is tuned to 

replicate the choice selections of each participant in a 

study, thus (hopefully) estimating the cognitive processes.

Part III Summary
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